from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool import datetime import requests import pytz import yaml from tools.final_answer import FinalAnswerTool from Gradio_UI import GradioUI from bs4 import BeautifulSoup @tool def amazon_product_scraper(search_url: str) -> list: """ Scrapes Amazon search results for product titles, prices, delivery fees, and links. Args: search_url: The URL of the Amazon search results page containing product listings. Returns: A list containing two elements: - A list of dictionaries, each with keys "Title", "Price", "Delivery", "Link", sorted by price. - A string containing a recommendation for the best deal. """ headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36" } response = requests.get(search_url, headers=headers) if response.status_code != 200: return [], "Failed to retrieve Amazon results. Amazon may be blocking requests." soup = BeautifulSoup(response.text, 'html.parser') product_data = [] for item in soup.select("div[data-asin]"): title_tag = item.select_one("h2 a") price_tag = item.select_one("span.a-price-whole") delivery_tag = item.select_one("span.s-align-children-center") if title_tag and price_tag: title = title_tag.text.strip() price = price_tag.text.strip().replace(',', '') # Normalize prices delivery = delivery_tag.text.strip() if delivery_tag else "Free" link = "https://www.amazon.com" + title_tag["href"] product_data.append({ "Title": title, "Price": float(price) if price.isnumeric() else None, "Delivery": delivery, "Link": link }) # Filter out products with no price and sort by price product_data = [p for p in product_data if p["Price"] is not None] product_data.sort(key=lambda x: x["Price"]) # Recommendation logic best_deal = product_data[0] if product_data else None recommendation = "" if best_deal is not None: recommendation = f"Best deal: {best_deal['Title']} at ${best_deal['Price']} with {best_deal['Delivery']} (Link: {best_deal['Link']})" return product_data, recommendation