MehdiH7 commited on
Commit
1989e09
Β·
verified Β·
1 Parent(s): 82b42af

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -3
README.md CHANGED
@@ -1,8 +1,8 @@
1
  ---
2
  title: HockeyAI
3
- emoji: πŸ”₯
4
- colorFrom: purple
5
- colorTo: red
6
  sdk: gradio
7
  sdk_version: 5.11.0
8
  app_file: app.py
@@ -10,4 +10,38 @@ pinned: false
10
  license: mit
11
  ---
12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
  title: HockeyAI
3
+ emoji: πŸ’
4
+ colorFrom: blue
5
+ colorTo: indigo
6
  sdk: gradio
7
  sdk_version: 5.11.0
8
  app_file: app.py
 
10
  license: mit
11
  ---
12
 
13
+ # πŸ’ HockeyAI: A Multi-Class Ice Hockey Dataset for Object Detection
14
+
15
+ ## Overview
16
+ HockeyAI is a specialized dataset and object detection system designed for ice hockey analysis. Built on the YOLOv8 architecture, this project provides accurate detection of key hockey game elements including players, officials, and game-specific features. The project includes both a comprehensive dataset and benchmark implementations using YOLOv8.
17
+
18
+ ## 🎯 Dataset Classes
19
+ Our dataset includes seven key classes essential for hockey game analysis:
20
+ - Center Ice (centerIce)
21
+ - Face-off Circles (faceoff)
22
+ - Goals (goal)
23
+ - Goaltenders (goaltender)
24
+ - Players (player)
25
+ - Pucks (puck)
26
+ - Referees (referee)
27
+
28
+ ## πŸ“Š Model Specifications
29
+ - **Architecture**: YOLOv8 Medium
30
+ - **Framework**: Ultralytics YOLOv8
31
+
32
+ ## πŸ”§ Usage Guide
33
+ 1. Upload any ice hockey game frame
34
+ 2. The model will detect and classify:
35
+ - Game elements (center ice, face-off circles, goals)
36
+ - Personnel (players, goaltenders, referees)
37
+ - Equipment (pucks)
38
+ 3. View results with bounding boxes and confidence scores
39
+
40
+ ## πŸ’» Technical Implementation
41
+ - **Backend**: Python 3.9+
42
+ - **Interface**: Gradio 5.11.0
43
+ - **Deep Learning Framework**: PyTorch
44
+ - **Hardware Optimization**: GPU-accelerated inference
45
+
46
+
47
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference