import gradio as gr from ultralytics import YOLO from PIL import Image import torch # Load your model model = YOLO('HockeyAI_model_weight.pt') def predict(image): # Convert gradio image to PIL if isinstance(image, str): image = Image.open(image) # Run inference results = model.predict(image) # Get the plotted image with predictions return results[0].plot() # Example images examples = [ "exm_1.jpg", "exm_3.jpg" ] # Create Gradio interface demo = gr.Interface( fn=predict, inputs=gr.Image(), outputs=gr.Image(), title="HockeyAI", description="Upload an image to detect 7 differnt objects using a finetuned YOLOv8 for Icek Hockey frames.", examples=examples ) demo.launch()