Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,12 +3,9 @@ import gradio as gr
|
|
3 |
import torch
|
4 |
from torchvision import transforms, models
|
5 |
import cv2
|
6 |
-
from PIL import Image
|
7 |
import numpy as np
|
|
|
8 |
from ultralytics import YOLO
|
9 |
-
import os
|
10 |
-
|
11 |
-
DEMO_VIDEO = "hockey_sample_5s.mp4"
|
12 |
|
13 |
def load_models():
|
14 |
# Initialize YOLO
|
@@ -23,14 +20,21 @@ def load_models():
|
|
23 |
|
24 |
return yolo_model, squeezenet_model
|
25 |
|
26 |
-
def
|
27 |
-
if
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
# Initialize models
|
31 |
yolo_model, squeezenet_model = load_models()
|
32 |
|
33 |
-
# Class labels
|
34 |
class_labels = [
|
35 |
"Bottom", "Bottom_Left", "Bottom_Right", "Left",
|
36 |
"Right", "Top", "Top_Left", "Top_Right"
|
@@ -43,106 +47,83 @@ def process_video(video_path):
|
|
43 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
44 |
])
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
-
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
49 |
-
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
50 |
-
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
51 |
|
52 |
-
#
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
while cap.isOpened():
|
58 |
-
ret, frame = cap.read()
|
59 |
-
if not ret:
|
60 |
-
break
|
61 |
-
|
62 |
-
# Run YOLO detection
|
63 |
-
results = yolo_model(frame)
|
64 |
|
65 |
-
# Process
|
66 |
-
|
67 |
-
|
68 |
-
conf = float(box.conf[0].cpu().numpy())
|
69 |
-
cls = int(box.cls[0].cpu().numpy())
|
70 |
|
71 |
-
#
|
72 |
-
if
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
with torch.no_grad():
|
84 |
-
output = squeezenet_model(image_tensor)
|
85 |
-
direction_class = torch.argmax(output, dim=1).item()
|
86 |
-
|
87 |
-
# Draw annotations
|
88 |
-
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
89 |
-
cv2.putText(frame, f"{conf:.2f}", (x1, y1-10),
|
90 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
91 |
-
|
92 |
-
# Draw direction arrow
|
93 |
-
center_x, center_y = (x1 + x2) // 2, (y1 + y2) // 2
|
94 |
-
arrow_length = 50
|
95 |
-
direction = class_labels[direction_class]
|
96 |
-
|
97 |
-
# Calculate arrow endpoint
|
98 |
-
end_x, end_y = center_x, center_y
|
99 |
-
if "Top" in direction:
|
100 |
-
end_y = center_y - arrow_length
|
101 |
-
elif "Bottom" in direction:
|
102 |
-
end_y = center_y + arrow_length
|
103 |
-
if "Left" in direction:
|
104 |
-
end_x = center_x - arrow_length
|
105 |
-
elif "Right" in direction:
|
106 |
-
end_x = center_x + arrow_length
|
107 |
-
|
108 |
-
cv2.arrowedLine(frame, (center_x, center_y), (end_x, end_y),
|
109 |
-
(0, 0, 255), 2, tipLength=0.3)
|
110 |
-
|
111 |
-
out.write(frame)
|
112 |
|
113 |
-
|
114 |
-
out.release()
|
115 |
-
|
116 |
-
return output_path
|
117 |
-
|
118 |
-
def example_video():
|
119 |
-
return DEMO_VIDEO
|
120 |
|
121 |
# Create Gradio interface
|
122 |
def gradio_interface():
|
123 |
with gr.Blocks() as iface:
|
124 |
gr.Markdown("# Player Direction Detection")
|
125 |
-
gr.Markdown("Upload
|
126 |
|
127 |
with gr.Row():
|
128 |
with gr.Column():
|
129 |
-
|
130 |
-
demo_button = gr.Button("Use Demo Video")
|
131 |
-
|
132 |
with gr.Column():
|
133 |
-
|
134 |
|
135 |
-
# Handle
|
136 |
-
|
137 |
-
fn=
|
138 |
-
|
|
|
139 |
)
|
140 |
|
141 |
-
#
|
142 |
-
|
143 |
-
|
144 |
-
inputs=
|
145 |
-
outputs=
|
|
|
|
|
146 |
)
|
147 |
|
148 |
return iface
|
|
|
3 |
import torch
|
4 |
from torchvision import transforms, models
|
5 |
import cv2
|
|
|
6 |
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
from ultralytics import YOLO
|
|
|
|
|
|
|
9 |
|
10 |
def load_models():
|
11 |
# Initialize YOLO
|
|
|
20 |
|
21 |
return yolo_model, squeezenet_model
|
22 |
|
23 |
+
def process_image(input_image):
|
24 |
+
if input_image is None:
|
25 |
+
return None
|
26 |
+
|
27 |
+
# Convert to numpy array if needed
|
28 |
+
if isinstance(input_image, str):
|
29 |
+
image = cv2.imread(input_image)
|
30 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
31 |
+
else:
|
32 |
+
image = input_image.copy()
|
33 |
+
|
34 |
# Initialize models
|
35 |
yolo_model, squeezenet_model = load_models()
|
36 |
|
37 |
+
# Class labels for direction
|
38 |
class_labels = [
|
39 |
"Bottom", "Bottom_Left", "Bottom_Right", "Left",
|
40 |
"Right", "Top", "Top_Left", "Top_Right"
|
|
|
47 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
48 |
])
|
49 |
|
50 |
+
# Run YOLO detection
|
51 |
+
results = yolo_model(image)
|
|
|
|
|
|
|
52 |
|
53 |
+
# Process each detection
|
54 |
+
for box in results[0].boxes:
|
55 |
+
xyxy = box.xyxy[0].cpu().numpy()
|
56 |
+
conf = float(box.conf[0].cpu().numpy())
|
57 |
+
cls = int(box.cls[0].cpu().numpy())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
# Process only if it's a player (class 4) and confidence is above threshold
|
60 |
+
if cls == 4 and conf > 0.5:
|
61 |
+
x1, y1, x2, y2 = map(int, xyxy)
|
|
|
|
|
62 |
|
63 |
+
# Crop and process for direction classification
|
64 |
+
if x2 > x1 and y2 > y1:
|
65 |
+
cropped_array = image[y1:y2, x1:x2]
|
66 |
+
if cropped_array.size > 0:
|
67 |
+
cropped_image = Image.fromarray(cropped_array)
|
68 |
+
|
69 |
+
# Predict direction
|
70 |
+
image_tensor = transform(cropped_image).unsqueeze(0)
|
71 |
+
with torch.no_grad():
|
72 |
+
output = squeezenet_model(image_tensor)
|
73 |
+
direction_class = torch.argmax(output, dim=1).item()
|
74 |
+
|
75 |
+
# Draw annotations
|
76 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
77 |
+
cv2.putText(image, f"{conf:.2f}", (x1, y1-10),
|
78 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
79 |
+
|
80 |
+
# Draw direction arrow
|
81 |
+
center_x, center_y = (x1 + x2) // 2, (y1 + y2) // 2
|
82 |
+
arrow_length = 50
|
83 |
+
direction = class_labels[direction_class]
|
84 |
+
|
85 |
+
# Calculate arrow endpoint
|
86 |
+
end_x, end_y = center_x, center_y
|
87 |
+
if "Top" in direction:
|
88 |
+
end_y = center_y - arrow_length
|
89 |
+
elif "Bottom" in direction:
|
90 |
+
end_y = center_y + arrow_length
|
91 |
+
if "Left" in direction:
|
92 |
+
end_x = center_x - arrow_length
|
93 |
+
elif "Right" in direction:
|
94 |
+
end_x = center_x + arrow_length
|
95 |
|
96 |
+
cv2.arrowedLine(image, (center_x, center_y), (end_x, end_y),
|
97 |
+
(0, 0, 255), 2, tipLength=0.3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
+
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
# Create Gradio interface
|
102 |
def gradio_interface():
|
103 |
with gr.Blocks() as iface:
|
104 |
gr.Markdown("# Player Direction Detection")
|
105 |
+
gr.Markdown("Upload an image to detect players and their movement directions")
|
106 |
|
107 |
with gr.Row():
|
108 |
with gr.Column():
|
109 |
+
input_image = gr.Image(label="Input Image", type="numpy")
|
|
|
|
|
110 |
with gr.Column():
|
111 |
+
output_image = gr.Image(label="Output Image")
|
112 |
|
113 |
+
# Handle image processing
|
114 |
+
input_image.change(
|
115 |
+
fn=process_image,
|
116 |
+
inputs=[input_image],
|
117 |
+
outputs=[output_image]
|
118 |
)
|
119 |
|
120 |
+
# Add example images if you have them
|
121 |
+
gr.Examples(
|
122 |
+
examples=["example-1.jpg", "example-2.jpg"],
|
123 |
+
inputs=input_image,
|
124 |
+
outputs=output_image,
|
125 |
+
fn=process_image,
|
126 |
+
cache_examples=True
|
127 |
)
|
128 |
|
129 |
return iface
|