File size: 7,259 Bytes
2b57175
 
9e4515d
 
f6d47e5
33f88d6
f9f09f4
 
f6d47e5
f9f09f4
9110c66
c40b1ac
 
2b57175
 
c40b1ac
 
 
 
 
 
 
 
f9f09f4
8fd12db
c7c831b
c154927
160dbfd
d602371
9e4515d
257177b
160dbfd
c6b2561
 
 
f9f09f4
c154927
 
 
00aad64
c154927
 
b445d32
0b3d421
c154927
d602371
0b3d421
 
 
d602371
0b3d421
 
 
d602371
160dbfd
c154927
f9f09f4
33f88d6
 
257177b
f9f09f4
 
441f3cf
9e4515d
5e75ea4
9e4515d
 
 
 
 
 
 
 
 
0b3d421
9e4515d
 
 
3f3374a
c7c831b
9e4515d
0b3d421
9e4515d
 
 
44417a9
12df570
 
 
8d60fff
c154927
 
cef7c8f
12df570
235a7c1
c154927
12df570
 
716f5a5
 
c154927
12df570
278edea
12df570
c154927
12df570
 
1507e7a
bcf11a1
12df570
c154927
9e4515d
 
445b2d0
1ef368a
445b2d0
 
c154927
68a1a94
 
 
 
c6d57b5
68a1a94
c154927
9e4515d
c154927
 
d041d2b
 
 
 
 
 
 
 
 
 
 
 
e521e5e
d041d2b
0b3d421
d041d2b
 
e521e5e
d041d2b
 
 
 
 
 
 
 
 
 
 
 
 
c154927
c1d0fb4
 
 
 
 
 
 
 
c154927
 
 
 
c1d0fb4
 
c154927
 
 
 
 
 
23a2412
9e4515d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import sys
import subprocess
import gradio as gr
import json
from datetime import datetime, timezone
from huggingface_hub import upload_file, snapshot_download
import shutil
import os
import glob
from pathlib import Path
from huggingface_hub import whoami
import platform

print(subprocess.check_output(
    [sys.executable, "-m", "pip", "list"]).decode("utf-8"))
print({
    "python": platform.python_version(),
    "os": platform.system(),
    "platform": platform.platform(),
    "arch": platform.machine()
})
print("Account token used to connect to HuggingFace: ", whoami()['name'])


SUBMISSION_REPO = "SimulaMet/medvqa-submissions"
hub_path = None
submissions = None
last_submission_update_time = datetime.now(timezone.utc)


def refresh_submissions():
    global hub_path, submissions, last_submission_update_time
    if hub_path and Path(hub_path).exists():
        shutil.rmtree(hub_path, ignore_errors=True)
        print("Deleted existing submissions")

    hub_path = snapshot_download(
        repo_type="dataset", repo_id=SUBMISSION_REPO, allow_patterns=['**/*.json'])
    print("Downloaded submissions to:", hub_path)
    if not os.path.exists(hub_path):
        os.makedirs(hub_path)

    all_jsons = glob.glob(hub_path + "/**/*.json", recursive=True)
    print("json_files count:", len(all_jsons))

    submissions = []
    for file in all_jsons:
        file_ = file.split("/")[-1]
        username, sub_timestamp, task = file_.replace(
            ".json", "").split("-_-_-")
        json_data = json.load(open(file))
        public_score = json.dumps(json_data.get("public_scores", {}))
        submissions.append({"user": username, "task": task, "public_score": public_score,
                           "submitted_time": sub_timestamp})

    last_submission_update_time = datetime.now(timezone.utc)
    return hub_path


hub_path = refresh_submissions()
hub_dir = hub_path.split("snapshot")[0] + "snapshot"


def time_ago(submitted_time):
    return str(datetime.fromtimestamp(int(submitted_time), tz=timezone.utc)) + " UTC"


def filter_submissions(task_type, search_query):
    if search_query == "":
        filtered = [s for s in submissions if task_type ==
                    "all" or s["task"] == task_type]
    else:
        filtered = [s for s in submissions if (
            task_type == "all" or s["task"] == task_type) and search_query.lower() in s["user"].lower()]
    return [{"user": s["user"], "task": s["task"], "public_score": s["public_score"], "submitted_time": time_ago(s["submitted_time"])} for s in filtered]


def display_submissions(task_type="all", search_query=""):
    if submissions is None or ((datetime.now(timezone.utc) - last_submission_update_time).total_seconds() > 3600):
        refresh_submissions()
    filtered_submissions = filter_submissions(task_type, search_query)
    return [[s["user"], s["task"], s["submitted_time"], s["public_score"]] for s in filtered_submissions]


def add_submission(file):
    global submissions
    try:
        with open(file, 'r', encoding='utf-8') as f:
            data = json.load(f)

        filename = os.path.basename(file)
        username, sub_timestamp, task = filename.replace(
            ".json", "").split("-_-_-")
        submission_time = datetime.fromtimestamp(
            int(sub_timestamp), tz=timezone.utc)

        assert task in ["task1", "task2"], "Invalid task type"
        assert len(username) > 0, "Invalid username"
        assert submission_time < datetime.now(
            timezone.utc), "Invalid submission time"

        upload_file(
            repo_type="dataset",
            path_or_fileobj=file,
            path_in_repo=task + "/" + filename,
            repo_id=SUBMISSION_REPO
        )
        refresh_submissions()
        return "πŸ’ͺπŸ†πŸŽ‰ Submissions registered successfully to the system!"
    except Exception as e:
        return f"❌ Error adding submission: {e}"


def refresh_page():
    return "Pong! Submission server is alive! 😊"


# Define Gradio Interface
with gr.Blocks(title="🌟ImageCLEFmed-MEDVQA-GI 2025 Submissions 🌟") as demo:
    gr.Markdown("""
# 🌟 Welcome to the official submission portal for the [MEDVQA-GI 2025](https://www.imageclef.org/2025/medical/vqa) challenge! πŸ₯🧬
### πŸš€ [**Challenge Homepage** in GitHub](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025) |  πŸ“ [**Register** for ImageCLEF 2025](https://www.imageclef.org/2025#registration)   | πŸ“… [**Competition Schedule**](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#:~:text=Schedule) | πŸ“¦ [**Submission Instructions**](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#-submission-system)πŸ”₯πŸ”₯
### πŸ“₯ [**Available Datasets**](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#-data) | πŸ’‘ [Tasks & Example Training **Notebooks**](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#-task-descriptions)πŸ’₯πŸ’₯       
""")

    with gr.Tab("View Submissions"):
        gr.Markdown("### Filter and Search Submissions")

        with gr.Row():
            with gr.Column(scale=1):
                task_type_dropdown = gr.Dropdown(
                    choices=["all", "task1", "task2"],
                    value="all",
                    label="Task Type"
                )
                search_box = gr.Textbox(
                    label="Search by Username",
                    placeholder="Enter username..."
                )

            with gr.Column(scale=6):
                output_table = gr.Dataframe(
                    headers=["User", "Task", "Submitted Time", "Public Score"],
                    interactive=False,
                    wrap=True,
                    column_widths=["100px", "50px", "80px", "200px"],
                    label="Submissions"
                )

        task_type_dropdown.change(
            fn=display_submissions,
            inputs=[task_type_dropdown, search_box],
            outputs=output_table
        )
        search_box.change(
            fn=display_submissions,
            inputs=[task_type_dropdown, search_box],
            outputs=output_table
        )

        gr.Markdown(
            f'''
            πŸ”„ Last refreshed: {last_submission_update_time.strftime('%Y-%m-%d %H:%M:%S')} UTC |  πŸ“Š Total Submissions: {len(submissions)}

            πŸ’¬ For any questions or issues, [contact the organizers](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#-organizers) or check the documentation in the [GitHub repo](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025).  Good luck and thank you for contributing to medical AI research! πŸ’ͺπŸ€–πŸŒ
            ''')

    with gr.Tab("Upload Submission", visible=False):
        file_input = gr.File(label="Upload JSON", file_types=[".json"])
        upload_output = gr.Textbox(label="Upload Result")
        file_input.upload(fn=add_submission,
                          inputs=file_input, outputs=upload_output)

    with gr.Tab("Refresh API", visible=False):
        refresh_button = gr.Button("Refresh")
        status_output = gr.Textbox(label="Status")
        refresh_button.click(fn=refresh_page, inputs=[], outputs=status_output)

    demo.load(lambda: display_submissions("all", ""),
              inputs=[], outputs=output_table)

demo.launch()