File size: 7,569 Bytes
9e4515d
 
f6d47e5
33f88d6
f9f09f4
 
f6d47e5
f9f09f4
9110c66
716f5a5
f9f09f4
8fd12db
c7c831b
12df570
d602371
160dbfd
d602371
9e4515d
257177b
160dbfd
c6b2561
 
 
f9f09f4
929f324
6815557
c7c831b
00aad64
 
c7c831b
b445d32
 
071abd4
d602371
 
 
 
 
 
160dbfd
 
f9f09f4
33f88d6
 
257177b
f9f09f4
257177b
f9f09f4
 
 
441f3cf
9e4515d
5e75ea4
9e4515d
 
 
 
 
 
 
 
 
 
 
 
 
3f3374a
c7c831b
a4c4098
9e4515d
1c51e2c
9e4515d
 
 
44417a9
12df570
8d60fff
12df570
 
8d60fff
12df570
cef7c8f
12df570
235a7c1
12df570
 
716f5a5
 
12df570
 
278edea
12df570
cef7c8f
12df570
 
1507e7a
bcf11a1
12df570
 
9e4515d
 
445b2d0
1ef368a
445b2d0
 
9e4515d
1c51e2c
23a2412
9e4515d
68a1a94
 
 
 
 
 
 
 
 
 
 
9e4515d
 
 
68a1a94
 
 
 
 
 
 
 
 
c6d57b5
 
68a1a94
9e4515d
b445d32
9e4515d
 
 
b445d32
9e4515d
68a1a94
9e4515d
68a1a94
 
 
 
 
 
 
1d9823e
cb3460f
 
 
 
 
445b2d0
 
 
 
 
 
 
 
 
23a2412
 
 
9e4515d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import gradio as gr
import json
from datetime import datetime, timezone
from huggingface_hub import upload_file, snapshot_download
import shutil
import os
import glob
from pathlib import Path
from huggingface_hub import whoami
print("Account token used to connect to HuggingFace: ", whoami()['name'])

SUBMISSION_REPO = "SimulaMet/medvqa-submissions"
hub_path = None

submissions = None  # [{"user": u, "task": t, "submitted_time": ts}]
last_submission_update_time = datetime.now(timezone.utc)


def refresh_submissions():
    global hub_path, submissions, last_submission_update_time
    if hub_path and Path(hub_path).exists():
        shutil.rmtree(hub_path, ignore_errors=True)
        print("Deleted existing submissions")

    hub_path = snapshot_download(repo_type="dataset",
                                 repo_id=SUBMISSION_REPO, allow_patterns=['**/*.json'])
    print("Downloaded submissions to: ", hub_path)
    if not os.path.exists(hub_path):
        os.makedirs(hub_path)  # empty repo case
    print("os.listdir(hub_path):", os.listdir(hub_path))
    all_jsons = glob.glob(hub_path + "/**/*.json", recursive=True)
    json_files = [f.split("/")[-1] for f in all_jsons]
    print("json_files count:", len(json_files))
    submissions = []
    for file in json_files:
        username, sub_timestamp, task = file.replace(
            ".json", "").split("-_-_-")
        submissions.append({"user": username, "task": task,
                           "submitted_time": sub_timestamp})
    last_submission_update_time = datetime.now(timezone.utc)

    return hub_path


hub_path = refresh_submissions()

print(f"{SUBMISSION_REPO} downloaded to {hub_path}")
# remove strings after snapshot in hub_path
hub_dir = hub_path.split("snapshot")[0] + "snapshot"


def time_ago(submitted_time):
    return str(datetime.fromtimestamp(int(submitted_time), tz=timezone.utc)) + " UTC"


def filter_submissions(task_type, search_query):
    if search_query == "":
        filtered = [s for s in submissions if task_type ==
                    "all" or s["task"] == task_type]
    else:
        filtered = [s for s in submissions if (
            task_type == "all" or s["task"] == task_type) and search_query.lower() in s["user"].lower()]
    return [{"user": s["user"], "task": s["task"], "submitted_time": time_ago(s["submitted_time"])} for s in filtered]


def display_submissions(task_type="all", search_query=""):
    if submissions is None or ((datetime.now(timezone.utc) - last_submission_update_time).total_seconds() > 3600):
        refresh_submissions()
    print("Displaying submissions...", submissions)
    filtered_submissions = filter_submissions(task_type, search_query)
    return gr.update(value=[[s["user"], s["task"], s["submitted_time"]] for s in filtered_submissions])


def add_submission(file):
    global submissions
    try:
        print("Received submission: ", file)
        with open(file, 'r', encoding='utf-8') as f:
            data = json.load(f)

        username, sub_timestamp, task = file.replace(
            ".json", "").split("-_-_-")
        submission_time = datetime.fromtimestamp(
            int(sub_timestamp), tz=timezone.utc)
        assert task in ["task1", "task2"], "Invalid task type"
        assert len(username) > 0, "Invalid username"
        assert submission_time < datetime.now(
            timezone.utc), "Invalid submission time"
        print("Adding submission...", username, task, submission_time)
        upload_file(
            repo_type="dataset",
            path_or_fileobj=file,
            path_in_repo=task+"/"+file.split("/")[-1],
            repo_id=SUBMISSION_REPO
        )
        refresh_submissions()
        return "πŸ’ͺπŸ†πŸŽ‰ Submissions registered successfully to the system!"
    except Exception as e:
        raise Exception(f"Error adding submission: {e}")


def refresh_page():
    return "Pong! Submission server is alive! 😊"


# Define Gradio interface components
output_table = gr.Dataframe(headers=[
                            "User", "Task", "Submitted Time"], interactive=False, value=[], scale=5,)
task_type_dropdown = gr.Dropdown(
    choices=["all", "task1", "task2"],
    value="all",
    label="Task Type",
    info="Filter submissions by Task 1 (VQA) or Task 2 (Synthetic Image Generation)"
)
search_box = gr.Textbox(
    value="",
    label="Search by Username",
    info="Enter a username to filter specific submissions"
)

upload_button = gr.File(label="Upload JSON", file_types=["json"])

# Create a tabbed interface
with gr.Blocks(title="🌟ImageCLEFmed-MEDVQA-GI 2025 Submissions 🌟") as demo:
    # gr.Markdown("""
    #             # Welcome to the official submission portal for the [MEDVQA-GI 2025](https://www.imageclef.org/2025/medical/vqa) challenge!
    #             - πŸ”— [Challenge Homepage](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025) | [Register for ImageCLEF 2025](https://www.imageclef.org/2025#registration)
    #             - πŸ”— [Submission Insructions](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#-submission-system)
    #             """)
    gr.Markdown("""
# 🌟 Welcome to the official submission portal for the [MEDVQA-GI 2025](https://www.imageclef.org/2025/medical/vqa) challenge! πŸ₯🧬
### πŸš€ [**Challenge Homepage** in GitHub](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025) |  πŸ“ [**Register** for ImageCLEF 2025](https://www.imageclef.org/2025#registration)   | πŸ“… [**Competition Schedule**](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#:~:text=Schedule) | πŸ“¦ [**Submission Instructions**](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#-submission-system)πŸ”₯πŸ”₯
### πŸ“₯ [**Available Datasets**](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#-data) | πŸ’‘ [Tasks & Example Training **Notebooks**](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#-task-descriptions)πŸ’₯πŸ’₯       

""")
    with gr.Tab("View Submissions"):
        gr.Markdown("### Submissions Table")
        gr.Interface(
            fn=display_submissions,
            inputs=[task_type_dropdown, search_box],
            outputs=output_table,
            title="ImageCLEFmed-MEDVQA-GI-2025 Submissions",
            description="Filter and search submissions by task type and user:"
        )
        gr.Markdown(
            f'''
            πŸ”„ Last refreshed: {last_submission_update_time.strftime('%Y-%m-%d %H:%M:%S')} UTC |  πŸ“Š Total Submissions: {len(submissions)}

            πŸ’¬ For any questions or issues, [contact the organizers](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#-organizers) or check the documentation in the [GitHub repo](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025).  Good luck and thank you for contributing to medical AI research! πŸ’ͺπŸ€–πŸŒ
            ''')

    with gr.Tab("Upload Submission", visible=False):
        file_input = gr.File(label="Upload JSON", file_types=["json"])
        upload_output = gr.Textbox(label="Result")  # Add this line
        file_input.upload(add_submission, file_input,
                          upload_output)

    with gr.Tab("Refresh API", visible=False):
        gr.Interface(
            api_name="RefreshAPI",
            fn=refresh_page,
            inputs=[],
            outputs="text",
            title="Refresh API",
            description="Hidden interface to refresh the API."
        )
    demo.load(lambda: gr.update(value=[[s["user"], s["task"], s["submitted_time"]]
              for s in filter_submissions("all", "")]), inputs=[], outputs=output_table)

demo.launch()