|
from gradio_client import Client, handle_file |
|
from huggingface_hub import snapshot_download, login, whoami |
|
import argparse |
|
import os |
|
import subprocess as sp |
|
import time |
|
from datetime import datetime, timezone |
|
import shutil |
|
import json |
|
from huggingface_hub import HfApi, grant_access |
|
import re |
|
|
|
HF_GATE_ACESSLIST = ["SushantGautam", |
|
"stevenah", "vlbthambawita"] |
|
|
|
MEDVQA_SUBMIT = True if os.environ.get( |
|
'_MEDVQA_SUBMIT_FLAG_', 'FALSE') == 'TRUE' else False |
|
parser = argparse.ArgumentParser(description='Run GI-1015 Task 1 (VQA)') |
|
parser.add_argument('--repo_id', type=str, required=True, |
|
help='Path to the HF submission repository') |
|
args, _ = parser.parse_known_args() |
|
|
|
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" |
|
submission_file = "submission_task1.py" |
|
file_from_validation = "predictions_1.json" |
|
|
|
min_library = ["datasets>=3.4.1", "transformers", "evaluate", |
|
"rouge_score", 'tqdm', "gradio_client>=1.8.0"] |
|
|
|
print("π ImageCLEFmed-MEDVQA-GI-2025 π", |
|
"https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025") |
|
print("π Subtask 1: Algorithm Development for Question Interpretation and Response") |
|
print(f"π Analyzing submission repository: {args.repo_id} π") |
|
|
|
try: |
|
print(f"Logged in to HuggingFace as: {whoami()['name']}") |
|
except Exception: |
|
print("β οΈβ οΈ Not logged in to HuggingFace! Please get your login token from https://huggingface.co/settings/tokens π") |
|
login() |
|
|
|
client = Client("SimulaMet/medvqa") |
|
print("π Communicating with the Submission Server: Ping!") |
|
result = client.predict( |
|
api_name="/refresh_page" |
|
) |
|
print(result) |
|
|
|
|
|
hf_username = whoami()['name'] |
|
assert len(hf_username) > 0, "π« HuggingFace login failed for some reason" |
|
current_timestamp = int(time.time()) |
|
|
|
snap_dir = snapshot_download( |
|
repo_id=args.repo_id, allow_patterns=[submission_file, "requirements.txt"]) |
|
|
|
if not os.path.isfile(os.path.join(snap_dir, submission_file)): |
|
raise FileNotFoundError( |
|
f"Submission file '{submission_file}' not found in the repository!") |
|
|
|
if os.path.isfile(os.path.join(snap_dir, file_from_validation)): |
|
os.remove(os.path.join(snap_dir, file_from_validation)) |
|
|
|
print("π¦ Making sure of the minimum requirements to run the script π¦") |
|
sp.run(["python", "-m", "pip", "install", "-q"] + min_library, check=True) |
|
|
|
if os.path.isfile(os.path.join(snap_dir, "requirements.txt")): |
|
print( |
|
f"π¦ Installing requirements from the submission repo: {args.repo_id}/requirements.txt") |
|
sp.run(["python", "-m", "pip", "install", "-q", "-r", |
|
f"{snap_dir}/requirements.txt"], cwd=snap_dir, check=True) |
|
|
|
|
|
if os.environ.get("_MEDVQA_CHALLENGE_EVALUATE_FLAG_", "FALSE") == "TRUE": |
|
|
|
challenge_file = submission_file.replace(".py", "_challenge.py") |
|
submission_path = os.path.join(snap_dir, submission_file) |
|
challenge_path = os.path.join(snap_dir, challenge_file) |
|
with open(submission_path, "r", encoding="utf-8") as f: |
|
code = f.read() |
|
|
|
pattern = r'val_dataset\s*=\s*load_dataset\(\s*["\']SimulaMet/Kvasir-VQA-test["\']\s*,\s*split\s*=\s*["\']validation["\']\s*\)' |
|
new_line = 'val_dataset = load_dataset("SimulaMet/Kvasir-VQA-private", split="test")' |
|
if re.search(pattern, code): |
|
code = re.sub(pattern, new_line, code) |
|
with open(challenge_path, "w", encoding="utf-8") as f: |
|
f.write(code) |
|
submission_file = challenge_file |
|
print(f"π Challenge file created at: {challenge_path}") |
|
else: |
|
print("β οΈ Challenge patch not applied: expected line not found in submission file.") |
|
os.exit( |
|
"Please check the submission file for compatibility with challenge evaluation.") |
|
|
|
|
|
sp.run(["python", f"{snap_dir}/{submission_file}"], |
|
cwd=snap_dir, check=True) |
|
print( |
|
f"π The submission script ran successfully, the intermediate files are at {snap_dir}") |
|
|
|
if not MEDVQA_SUBMIT: |
|
print("\n You can now run medvqa validate_and_submit .... command to submit the task.") |
|
else: |
|
print("π Preparing for submission π") |
|
file_path_to_upload = os.path.join( |
|
snap_dir, f"{hf_username}-_-_-{current_timestamp}-_-_-task1.json") |
|
shutil.copy(os.path.join(snap_dir, file_from_validation), |
|
file_path_to_upload) |
|
|
|
with open(file_path_to_upload, 'r', encoding='utf-8') as f: |
|
data = json.load(f) |
|
data['repo_id'] = args.repo_id |
|
with open(file_path_to_upload, 'w', encoding='utf-8') as f: |
|
json.dump(data, f, ensure_ascii=False) |
|
api = HfApi() |
|
api.update_repo_visibility(args.repo_id, private=False) |
|
api.update_repo_settings( |
|
args.repo_id, gated='manual') |
|
for user in HF_GATE_ACESSLIST: |
|
try: |
|
grant_access(args.repo_id, user) |
|
except Exception as e: |
|
print(user, ":", e) |
|
print( |
|
f'''β
{args.repo_id} model is now made public, but gated, and is shared with organizers. |
|
You should not make the model private or remove/update it until the competition results are announced. |
|
Feel feel to re-submit the task if you change the model on the repository. |
|
We will notify you if there are any issues with the submission. |
|
''') |
|
|
|
result = client.predict( |
|
file=handle_file(file_path_to_upload), |
|
api_name="/add_submission" |
|
) |
|
print({"User": hf_username, "Task": "task1", |
|
"Submitted_time": str(datetime.fromtimestamp(int(current_timestamp), tz=timezone.utc)) + " UTC" |
|
}) |
|
print(result) |
|
print("Visit this URL to see the entry: π") |
|
Client("SimulaMet/medvqa") |
|
|
|
|
|
if os.environ.get("_MEDVQA_CHALLENGE_EVALUATE_FLAG_", "FALSE") == "TRUE": |
|
src_json = os.path.join(snap_dir, "predictions_1.json") |
|
if os.path.isfile(src_json): |
|
with open(src_json, "r", encoding="utf-8") as f: |
|
data = json.load(f) |
|
|
|
data.pop("debug", None) |
|
|
|
if "public_scores" in data: |
|
data["challenge_scores"] = data.pop("public_scores") |
|
|
|
team_name = data.get("submission_info", {}).get( |
|
"Team_Name", "unknown_team") |
|
team_name_safe = re.sub(r'[^a-zA-Z0-9_\-]', '_', team_name) |
|
out_json = os.path.join(os.getcwd(), f"task1_{team_name_safe}.json") |
|
with open(out_json, "w", encoding="utf-8") as f: |
|
json.dump(data, f, ensure_ascii=False, indent=2) |
|
print(f"β
Copied and processed predictions to: {out_json}") |
|
else: |
|
print("β predictions_1.json not found in snapshot directory!") |
|
|
|
|