SushantGautam commited on
Commit
2ec353b
·
1 Parent(s): 06f0c97

Add normalization to feature extraction and diversity scoring functions

Browse files
medvqa/submission_samples/gi-2025/submission_task2.py CHANGED
@@ -1,3 +1,4 @@
 
1
  from datasets import Dataset
2
  from sklearn.metrics.pairwise import cosine_similarity
3
  from scipy.linalg import sqrtm
@@ -123,7 +124,6 @@ def extract_features(batch):
123
  inputs = processor(images=batch['image'], return_tensors="pt").to(DEVICE)
124
  with torch.no_grad():
125
  feats = modelx(**inputs).last_hidden_state[:, 0, :]
126
- feats = feats / feats.norm(p=2, dim=-1, keepdim=True)
127
  return {'features': feats.cpu().numpy()}
128
 
129
 
@@ -143,10 +143,13 @@ def fid_score(feat1, feat2):
143
 
144
 
145
  def diversity_score(features):
 
146
  return pdist(features).mean()
147
 
148
 
149
  def mean_cosine_sim(feat1, feat2):
 
 
150
  return cosine_similarity(feat1, feat2).mean()
151
 
152
 
 
1
+ from sklearn.preprocessing import normalize
2
  from datasets import Dataset
3
  from sklearn.metrics.pairwise import cosine_similarity
4
  from scipy.linalg import sqrtm
 
124
  inputs = processor(images=batch['image'], return_tensors="pt").to(DEVICE)
125
  with torch.no_grad():
126
  feats = modelx(**inputs).last_hidden_state[:, 0, :]
 
127
  return {'features': feats.cpu().numpy()}
128
 
129
 
 
143
 
144
 
145
  def diversity_score(features):
146
+ features = normalize(features, axis=1)
147
  return pdist(features).mean()
148
 
149
 
150
  def mean_cosine_sim(feat1, feat2):
151
+ feat1 = normalize(feat1, axis=1)
152
+ feat2 = normalize(feat2, axis=1)
153
  return cosine_similarity(feat1, feat2).mean()
154
 
155