Commit
·
8bd97dc
1
Parent(s):
fe6255d
Refactor submission_task1.py to include metric calculations and enhance output data structure; update pyproject.toml for improved dependency management.
Browse files
medvqa/submission_samples/gi-2025/submission_task1.py
CHANGED
@@ -5,13 +5,23 @@ import torch
|
|
5 |
import json
|
6 |
import time
|
7 |
from tqdm import tqdm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
val_dataset = load_dataset("SimulaMet-HOST/Kvasir-VQA")['raw'].select(range(5))
|
10 |
predictions = [] # List to store predictions
|
11 |
|
12 |
gpu_name = torch.cuda.get_device_name(
|
13 |
0) if torch.cuda.is_available() else "cpu"
|
14 |
-
device = "
|
15 |
|
16 |
|
17 |
def get_mem(): return torch.cuda.memory_allocated(device) / \
|
@@ -34,10 +44,10 @@ SUBMISSION_INFO = {
|
|
34 |
"Country": "Norway",
|
35 |
"Notes_to_organizers": '''
|
36 |
eg, We have finetund XXX model
|
37 |
-
This is optional . .
|
38 |
-
Used data augmentations . .
|
39 |
Custom info about the model . .
|
40 |
-
Any insights. .
|
41 |
+ Any informal things you like to share about this submission.
|
42 |
'''
|
43 |
}
|
@@ -88,14 +98,44 @@ for idx, ex in enumerate(tqdm(val_dataset, desc="Validating")):
|
|
88 |
# Ensure all predictions match dataset length
|
89 |
assert len(predictions) == len(
|
90 |
val_dataset), "Mismatch between predictions and dataset length"
|
91 |
-
|
92 |
total_time, final_mem = round(
|
93 |
time.time() - start_time, 4), round(get_mem() - post_model_mem, 2)
|
94 |
model_mem_used = round(post_model_mem - initial_mem, 2)
|
95 |
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
"predictions": predictions, "total_time": total_time, "time_per_item": total_time / len(val_dataset),
|
98 |
-
"memory_used_mb": final_mem, "model_memory_mb": model_mem_used, "gpu_name": gpu_name,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
|
101 |
with open("predictions_1.json", "w") as f:
|
|
|
5 |
import json
|
6 |
import time
|
7 |
from tqdm import tqdm
|
8 |
+
import subprocess
|
9 |
+
import platform
|
10 |
+
import sys
|
11 |
+
|
12 |
+
from evaluate import load
|
13 |
+
|
14 |
+
bleu = load("bleu")
|
15 |
+
rouge = load("rouge")
|
16 |
+
meteor = load("meteor")
|
17 |
+
|
18 |
|
19 |
val_dataset = load_dataset("SimulaMet-HOST/Kvasir-VQA")['raw'].select(range(5))
|
20 |
predictions = [] # List to store predictions
|
21 |
|
22 |
gpu_name = torch.cuda.get_device_name(
|
23 |
0) if torch.cuda.is_available() else "cpu"
|
24 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
25 |
|
26 |
|
27 |
def get_mem(): return torch.cuda.memory_allocated(device) / \
|
|
|
44 |
"Country": "Norway",
|
45 |
"Notes_to_organizers": '''
|
46 |
eg, We have finetund XXX model
|
47 |
+
This is optional . .
|
48 |
+
Used data augmentations . .
|
49 |
Custom info about the model . .
|
50 |
+
Any insights. .
|
51 |
+ Any informal things you like to share about this submission.
|
52 |
'''
|
53 |
}
|
|
|
98 |
# Ensure all predictions match dataset length
|
99 |
assert len(predictions) == len(
|
100 |
val_dataset), "Mismatch between predictions and dataset length"
|
101 |
+
|
102 |
total_time, final_mem = round(
|
103 |
time.time() - start_time, 4), round(get_mem() - post_model_mem, 2)
|
104 |
model_mem_used = round(post_model_mem - initial_mem, 2)
|
105 |
|
106 |
+
# caulcualtes metrics
|
107 |
+
references = [[e] for e in val_dataset['answer']]
|
108 |
+
preds = [pred['answer'] for pred in predictions]
|
109 |
+
|
110 |
+
bleu_result = bleu.compute(predictions=preds, references=references)
|
111 |
+
rouge_result = rouge.compute(predictions=preds, references=references)
|
112 |
+
meteor_result = meteor.compute(predictions=preds, references=references)
|
113 |
+
bleu_score = bleu_result['bleu']
|
114 |
+
rouge1_score = float(rouge_result['rouge1'])
|
115 |
+
rouge2_score = float(rouge_result['rouge2'])
|
116 |
+
rougeL_score = float(rouge_result['rougeL'])
|
117 |
+
meteor_score = float(meteor_result['meteor'])
|
118 |
+
public_scores = {
|
119 |
+
'bleu': bleu_score,
|
120 |
+
'rouge1': rouge1_score,
|
121 |
+
'rouge2': rouge2_score,
|
122 |
+
'rougeL': rougeL_score,
|
123 |
+
'meteor': meteor_score
|
124 |
+
}
|
125 |
+
|
126 |
+
# Saves predictions to a JSON file
|
127 |
+
|
128 |
+
output_data = {"submission_info": SUBMISSION_INFO, "public_scores": public_scores,
|
129 |
"predictions": predictions, "total_time": total_time, "time_per_item": total_time / len(val_dataset),
|
130 |
+
"memory_used_mb": final_mem, "model_memory_mb": model_mem_used, "gpu_name": gpu_name,
|
131 |
+
"debug": {
|
132 |
+
"packages": json.loads(subprocess.check_output([sys.executable, "-m", "pip", "list", "--format=json"])),
|
133 |
+
"system": {
|
134 |
+
"python": platform.python_version(),
|
135 |
+
"os": platform.system(),
|
136 |
+
"platform": platform.platform(),
|
137 |
+
"arch": platform.machine()
|
138 |
+
}}}
|
139 |
|
140 |
|
141 |
with open("predictions_1.json", "w") as f:
|
pyproject.toml
CHANGED
@@ -1,29 +1,31 @@
|
|
1 |
[project]
|
2 |
-
name = "medvqa"
|
3 |
-
version = "0.14.8"
|
4 |
-
description = "Competition Submission CLI for ImageCLEFmed-MedVQA-GI-2025 (https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025)"
|
5 |
-
readme = "README.md"
|
6 |
-
requires-python = ">=3.6"
|
7 |
-
dependencies = [
|
8 |
-
"huggingface_hub",
|
9 |
-
"huggingface_hub[hf_transfer]",
|
10 |
-
"gradio_client==1.3.0"
|
11 |
-
]
|
12 |
authors = [
|
13 |
-
{
|
14 |
]
|
15 |
classifiers = [
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
]
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
[project.scripts]
|
22 |
medvqa = "medvqa.cli:main"
|
23 |
|
24 |
[tool.setuptools.packages.find]
|
25 |
-
where = ["."]
|
26 |
include = ["*", "competitions/**/"]
|
|
|
27 |
|
28 |
[project.urls]
|
29 |
Homepage = "https://github.com/SushantGautam/MedVQA"
|
|
|
1 |
[project]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
authors = [
|
3 |
+
{name = "Sushant Gautam", email = "[email protected]"},
|
4 |
]
|
5 |
classifiers = [
|
6 |
+
"Programming Language :: Python :: 3",
|
7 |
+
"Operating System :: OS Independent",
|
8 |
+
]
|
9 |
+
dependencies = [
|
10 |
+
"huggingface_hub",
|
11 |
+
"huggingface_hub[hf_transfer]",
|
12 |
+
"gradio_client==1.3.0",
|
13 |
+
"evaluate",
|
14 |
+
"rouge_score",
|
15 |
]
|
16 |
+
description = "Competition Submission CLI for ImageCLEFmed-MedVQA-GI-2025 (https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025)"
|
17 |
+
license = {text = "MIT"}
|
18 |
+
name = "medvqa"
|
19 |
+
readme = "README.md"
|
20 |
+
requires-python = ">=3.6"
|
21 |
+
version = "0.14.8"
|
22 |
|
23 |
[project.scripts]
|
24 |
medvqa = "medvqa.cli:main"
|
25 |
|
26 |
[tool.setuptools.packages.find]
|
|
|
27 |
include = ["*", "competitions/**/"]
|
28 |
+
where = ["."]
|
29 |
|
30 |
[project.urls]
|
31 |
Homepage = "https://github.com/SushantGautam/MedVQA"
|