Commit
Β·
ba8c7e3
1
Parent(s):
1507e7a
add submission sample
Browse files
medvqa/submission_samples/gi-2025/submission_task1.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoModelForCausalLM
|
2 |
+
from datasets import load_dataset
|
3 |
+
from transformers import AutoProcessor
|
4 |
+
import torch
|
5 |
+
import json
|
6 |
+
import time
|
7 |
+
from tqdm import tqdm
|
8 |
+
|
9 |
+
val_dataset = load_dataset("SimulaMet-HOST/Kvasir-VQA")['raw'].select(range(5))
|
10 |
+
predictions = [] # List to store predictions
|
11 |
+
|
12 |
+
gpu_name = torch.cuda.get_device_name(
|
13 |
+
0) if torch.cuda.is_available() else "cpu"
|
14 |
+
device = "CUDA" if torch.cuda.is_available() else "cpu"
|
15 |
+
|
16 |
+
|
17 |
+
def get_mem(): return torch.cuda.memory_allocated(device) / \
|
18 |
+
(1024 ** 2) if torch.cuda.is_available() else 0
|
19 |
+
|
20 |
+
|
21 |
+
initial_mem = get_mem()
|
22 |
+
|
23 |
+
# βοΈβοΈ--------EDIT SECTION 1: SUBMISISON DETAILS and MODEL LOADING --------βοΈβοΈ#
|
24 |
+
|
25 |
+
SUBMISSION_INFO = {
|
26 |
+
# πΉ TODO: PARTICIPANTS MUST ADD PROPER SUBMISSION INFO FOR THE SUBMISSION πΉ
|
27 |
+
# This will be visible to the organizers
|
28 |
+
# DONT change the keys, only add your info
|
29 |
+
"Participant_Names": "Sushant Gautam, Steven Hicks and Vajita Thambawita",
|
30 |
+
"Affiliations": "SimulaMet",
|
31 |
+
"Contact_emails": ["[email protected]", "[email protected]"],
|
32 |
+
# But, the first email only will be used for correspondance
|
33 |
+
"Team_Name": "SimulaMetmedVQA Rangers",
|
34 |
+
"Country": "Norway",
|
35 |
+
"Notes_to_organizers": '''
|
36 |
+
eg, We have finetund XXX model
|
37 |
+
This is optional . .
|
38 |
+
Used data augmentations . .
|
39 |
+
Custom info about the model . .
|
40 |
+
Any insights. .
|
41 |
+
+ Any informal things you like to share about this submission.
|
42 |
+
'''
|
43 |
+
}
|
44 |
+
# πΉ TODO: PARTICIPANTS MUST LOAD THEIR MODEL HERE, EDIT AS NECESSARY FOR YOUR MODEL πΉ
|
45 |
+
# can add necessary library imports here
|
46 |
+
|
47 |
+
model_hf = AutoModelForCausalLM.from_pretrained(
|
48 |
+
"SushantGautam/Florence-2-vqa-demo", trust_remote_code=True).to(device)
|
49 |
+
processor = AutoProcessor.from_pretrained(
|
50 |
+
"microsoft/Florence-2-base-ft", trust_remote_code=True)
|
51 |
+
|
52 |
+
model_hf.eval() # Ensure model is in evaluation mode
|
53 |
+
# π----------------END SUBMISISON DETAILS and MODEL LOADING -----------------π#
|
54 |
+
|
55 |
+
start_time, post_model_mem = time.time(), get_mem()
|
56 |
+
total_time, final_mem = round(
|
57 |
+
time.time() - start_time, 4), round(get_mem() - post_model_mem, 2)
|
58 |
+
model_mem_used = round(post_model_mem - initial_mem, 2)
|
59 |
+
|
60 |
+
for idx, ex in enumerate(tqdm(val_dataset, desc="Validating")):
|
61 |
+
question = ex["question"]
|
62 |
+
image = ex["image"].convert(
|
63 |
+
"RGB") if ex["image"].mode != "RGB" else ex["image"]
|
64 |
+
# you have access to 'question' and 'image' variables for each example
|
65 |
+
|
66 |
+
# βοΈβοΈ___________EDIT SECTION 2: ANSWER GENERATION___________βοΈβοΈ#
|
67 |
+
# πΉ TODO: PARTICIPANTS CAN MODIFY THIS TOKENIZATION STEP IF NEEDED πΉ
|
68 |
+
inputs = processor(text=[question], images=[image],
|
69 |
+
return_tensors="pt", padding=True)
|
70 |
+
inputs = {k: v.to(device) for k, v in inputs.items()
|
71 |
+
if k not in ['labels', 'attention_mask']}
|
72 |
+
|
73 |
+
# πΉ TODO: PARTICIPANTS CAN MODIFY THE GENERATION AND DECODING METHOD HERE πΉ
|
74 |
+
with torch.no_grad():
|
75 |
+
output = model_hf.generate(**inputs)
|
76 |
+
answer = processor.tokenizer.decode(output[0], skip_special_tokens=True)
|
77 |
+
# make sure 'answer' variable will hold answer (sentence/word) as str
|
78 |
+
# π________________ END ANSWER GENERATION ________________π#
|
79 |
+
|
80 |
+
# β DO NOT EDIT any lines below from here, can edit only upto decoding step above as required. β
|
81 |
+
# Ensures answer is a string
|
82 |
+
assert isinstance(
|
83 |
+
answer, str), f"Generated answer at index {idx} is not a string"
|
84 |
+
# Appends prediction
|
85 |
+
predictions.append(
|
86 |
+
{"index": idx, "img_id": ex["img_id"], "question": ex["question"], "answer": answer})
|
87 |
+
|
88 |
+
# Ensure all predictions match dataset length
|
89 |
+
assert len(predictions) == len(
|
90 |
+
val_dataset), "Mismatch between predictions and dataset length"
|
91 |
+
# Saves predictions to a JSON file
|
92 |
+
total_time, final_mem = round(
|
93 |
+
time.time() - start_time, 4), round(get_mem() - post_model_mem, 2)
|
94 |
+
model_mem_used = round(post_model_mem - initial_mem, 2)
|
95 |
+
|
96 |
+
output_data = {"submission_info": SUBMISSION_INFO,
|
97 |
+
"predictions": predictions, "total_time": total_time, "time_per_item": total_time / len(val_dataset),
|
98 |
+
"memory_used_mb": final_mem, "model_memory_mb": model_mem_used, "gpu_name": gpu_name, }
|
99 |
+
|
100 |
+
|
101 |
+
with open("predictions_1.json", "w") as f:
|
102 |
+
json.dump(output_data, f, indent=4)
|
103 |
+
print(f"Time: {total_time}s | Mem: {final_mem}MB | Model Load Mem: {model_mem_used}MB | GPU: {gpu_name}")
|
104 |
+
print("β
Scripts Looks Good! Generation process completed successfully. Results saved to 'predictions_1.json'.")
|
105 |
+
print("Next Step:\n 1) Upload this submission_task1.py script file to HuggingFace model repository.")
|
106 |
+
print('''\n 2) Make a submission to the competition:\n Run:: medvqa validate_and_submit --competition=gi-2025 --task=1 --repo_id=...''')
|