import gradio as gr import json from datetime import datetime, timezone from huggingface_hub import upload_file, snapshot_download import shutil import os import glob from pathlib import Path from huggingface_hub import whoami print("Account token used to connect to HuggingFace: ", whoami()['name']) SUBMISSION_REPO = "SimulaMet/medvqa-submissions" hub_path = None submissions = None # [{"user": u, "task": t, "submitted_time": ts}] last_submission_update_time = datetime.now(timezone.utc) def refresh_submissions(): global hub_path, submissions, last_submission_update_time if hub_path and Path(hub_path).exists(): shutil.rmtree(hub_path, ignore_errors=True) print("Deleted existing submissions") hub_path = snapshot_download(repo_type="dataset", repo_id=SUBMISSION_REPO, allow_patterns=['**/*.json']) print("Downloaded submissions to: ", hub_path) if not os.path.exists(hub_path): os.makedirs(hub_path) # empty repo case print("os.listdir(hub_path):", os.listdir(hub_path)) all_jsons = glob.glob(hub_path + "/**/*.json", recursive=True) json_files = [f.split("/")[-1] for f in all_jsons] print("json_files count:", len(json_files)) submissions = [] for file in json_files: username, sub_timestamp, task = file.replace( ".json", "").split("-_-_-") submissions.append({"user": username, "task": task, "submitted_time": sub_timestamp}) last_submission_update_time = datetime.now(timezone.utc) return hub_path hub_path = refresh_submissions() print(f"{SUBMISSION_REPO} downloaded to {hub_path}") # remove strings after snapshot in hub_path hub_dir = hub_path.split("snapshot")[0] + "snapshot" def time_ago(submitted_time): return str(datetime.fromtimestamp(int(submitted_time), tz=timezone.utc)) + " UTC" def filter_submissions(task_type, search_query): if search_query == "": filtered = [s for s in submissions if task_type == "all" or s["task"] == task_type] else: filtered = [s for s in submissions if ( task_type == "all" or s["task"] == task_type) and search_query.lower() in s["user"].lower()] return [{"user": s["user"], "task": s["task"], "submitted_time": time_ago(s["submitted_time"])} for s in filtered] def display_submissions(task_type="all", search_query=""): if submissions is None or ((datetime.now(timezone.utc) - last_submission_update_time).total_seconds() > 3600): refresh_submissions() print("Displaying submissions...", submissions) filtered_submissions = filter_submissions(task_type, search_query) return gr.update(value=[[s["user"], s["task"], s["submitted_time"]] for s in filtered_submissions]) def add_submission(file): global submissions try: print("Received submission: ", file) with open(file, 'r', encoding='utf-8') as f: data = json.load(f) username, sub_timestamp, task = file.replace( ".json", "").split("-_-_-") submission_time = datetime.fromtimestamp( int(sub_timestamp), tz=timezone.utc) assert task in ["task1", "task2"], "Invalid task type" assert len(username) > 0, "Invalid username" assert submission_time < datetime.now( timezone.utc), "Invalid submission time" print("Adding submission...", username, task, submission_time) upload_file( repo_type="dataset", path_or_fileobj=file, path_in_repo=task+"/"+file.split("/")[-1], repo_id=SUBMISSION_REPO ) refresh_submissions() return "πŸ’ͺπŸ†πŸŽ‰ Submissions registered successfully to the system!" except Exception as e: raise Exception(f"Error adding submission: {e}") def refresh_page(): return "Pong! Submission server is alive! 😊" # Define Gradio interface components output_table = gr.Dataframe(headers=[ "User", "Task", "Submitted Time"], interactive=False, value=[], scale=5,) task_type_dropdown = gr.Dropdown( choices=["all", "task1", "task2"], value="all", label="Task Type", info="Filter submissions by Task 1 (VQA) or Task 2 (Synthetic Image Generation)" ) search_box = gr.Textbox( value="", label="Search by Username", info="Enter a username to filter specific submissions" ) upload_button = gr.File(label="Upload JSON", file_types=["json"]) # Create a tabbed interface with gr.Blocks(title="🌟ImageCLEFmed-MEDVQA-GI 2025 Submissions 🌟") as demo: # gr.Markdown(""" # # Welcome to the official submission portal for the [MEDVQA-GI 2025](https://www.imageclef.org/2025/medical/vqa) challenge! # - πŸ”— [Challenge Homepage](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025) | [Register for ImageCLEF 2025](https://www.imageclef.org/2025#registration) # - πŸ”— [Submission Insructions](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#-submission-system) # """) gr.Markdown(""" # 🌟 Welcome to the official submission portal for the [MEDVQA-GI 2025](https://www.imageclef.org/2025/medical/vqa) challenge! πŸ₯🧬 ### πŸš€ [**Challenge Homepage** in GitHub](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025) | πŸ“ [**Register** for ImageCLEF 2025](https://www.imageclef.org/2025#registration) | πŸ“… [**Competition Schedule**](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#:~:text=Schedule) | πŸ“¦ [**Submission Instructions**](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#-submission-system)πŸ”₯πŸ”₯ ### πŸ“₯ [**Available Datasets**](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#-data) | πŸ’‘ [Tasks & Example Training **Notebooks**](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#-task-descriptions)πŸ’₯πŸ’₯ """) with gr.Tab("View Submissions"): gr.Markdown("### Submissions Table") gr.Interface( fn=display_submissions, inputs=[task_type_dropdown, search_box], outputs=output_table, title="ImageCLEFmed-MEDVQA-GI-2025 Submissions", description="Filter and search submissions by task type and user:" ) gr.Markdown( f''' πŸ”„ Last refreshed: {last_submission_update_time.strftime('%Y-%m-%d %H:%M:%S')} UTC | πŸ“Š Total Submissions: {len(submissions)} πŸ’¬ For any questions or issues, [contact the organizers](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025#-organizers) or check the documentation in the [GitHub repo](https://github.com/simula/ImageCLEFmed-MEDVQA-GI-2025). Good luck and thank you for contributing to medical AI research! πŸ’ͺπŸ€–πŸŒ ''') with gr.Tab("Upload Submission", visible=False): file_input = gr.File(label="Upload JSON", file_types=["json"]) upload_output = gr.Textbox(label="Result") # Add this line file_input.upload(add_submission, file_input, upload_output) with gr.Tab("Refresh API", visible=False): gr.Interface( api_name="RefreshAPI", fn=refresh_page, inputs=[], outputs="text", title="Refresh API", description="Hidden interface to refresh the API." ) demo.load(lambda: gr.update(value=[[s["user"], s["task"], s["submitted_time"]] for s in filter_submissions("all", "")]), inputs=[], outputs=output_table) demo.launch()