import streamlit as st import os import requests from PIL import Image from io import BytesIO import replicate from stability_sdk import client import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation # Configure your API keys here CLIPDROP_API_KEY = '1143a102dbe21628248d4bb992b391a49dc058c584181ea72e17c2ccd49be9ca69ccf4a2b97fc82c89ff1029578abbea' STABLE_DIFFUSION_API_KEY = 'sk-GBmsWR78MmCSAWGkkC1CFgWgE6GPgV00pNLJlxlyZWyT3QQO' # Set up environment variable for Replicate API Token os.environ['REPLICATE_API_TOKEN'] = 'r8_3V5WKOBwbbuL0DQGMliP0972IAVIBo62Lmi8I' # Replace with your actual API token def generate_image_from_text(prompt): r = requests.post('https://clipdrop-api.co/text-to-image/v1', files = { 'prompt': (None, prompt, 'text/plain') }, headers = { 'x-api-key': CLIPDROP_API_KEY } ) if r.ok: return r.content else: r.raise_for_status() def resize_image(image_bytes, max_size=(256, 256)): # Open the image from bytes img = Image.open(BytesIO(image_bytes)) # Resize the image img.thumbnail(max_size) # Save it back to bytes buffer = BytesIO() img.save(buffer, format="PNG") return buffer.getvalue() def upscale_image_stable_diffusion(image_bytes): # Set up environment variables os.environ['STABILITY_HOST'] = 'grpc.stability.ai:443' os.environ['STABILITY_KEY'] = STABLE_DIFFUSION_API_KEY # Set up the connection to the API stability_api = client.StabilityInference( key=os.environ['STABILITY_KEY'], upscale_engine="stable-diffusion-x4-latent-upscaler", verbose=True, ) # Open the image from bytes img = Image.open(BytesIO(image_bytes)) # Call the upscale API answers = stability_api.upscale(init_image=img) # Process the response upscaled_img_bytes = None for resp in answers: for artifact in resp.artifacts: if artifact.type == generation.ARTIFACT_IMAGE: upscaled_img = Image.open(BytesIO(artifact.binary)) upscaled_img_bytes = BytesIO() upscaled_img.save(upscaled_img_bytes, format='PNG') upscaled_img_bytes = upscaled_img_bytes.getvalue() return upscaled_img_bytes def further_upscale_image(image_bytes): # Run the GFPGAN model output = replicate.run( "tencentarc/gfpgan:9283608cc6b7be6b65a8e44983db012355fde4132009bf99d976b2f0896856a3", input={"img": BytesIO(image_bytes), "version": "v1.4", "scale": 16} ) # The output is a URI of the processed image # We will retrieve the image data and save it response = requests.get(output) img = Image.open(BytesIO(response.content)) img.save("upscaled.png") # Save the upscaled image return img def main(): st.title("Image Generation and Upscaling") st.write("Enter a text prompt and an image will be generated and upscaled.") prompt = st.text_input("Enter a textual prompt to generate an image...") if prompt: st.success("Generating image from text prompt...") image_bytes = generate_image_from_text(prompt) st.success("Resizing image...") resized_image_bytes = resize_image(image_bytes) st.success("Upscaling image with stable-diffusion-x4-latent-upscaler...") # use the resized_image_bytes instead of the original image_bytes upscaled_image_bytes = upscale_image_stable_diffusion(resized_image_bytes) st.success("Further upscaling image with GFPGAN...") # Again use the upscaled_image_bytes from the previous step for the GFPGAN img = further_upscale_image(upscaled_image_bytes) st.image(img, caption='Upscaled Image', use_column_width=True) if __name__ == "__main__": main()