Spaces:
Runtime error
Runtime error
import streamlit as st | |
import os | |
import requests | |
from PIL import Image | |
from io import BytesIO | |
# Set up environment variables for API keys | |
os.environ['CLIPDROP_API_KEY'] = 'sk-GBmsWR78MmCSAWGkkC1CFgWgE6GPgV00pNLJlxlyZWyT3QQO' | |
os.environ['STABILITY_API_KEY'] = '1143a102dbe21628248d4bb992b391a49dc058c584181ea72e17c2ccd49be9ca69ccf4a2b97fc82c89ff1029578abbea' | |
os.environ['REPLICATE_API_TOKEN'] = 'r8_3V5WKOBwbbuL0DQGMliP0972IAVIBo62Lmi8I' | |
# Importing Replicate and Stability SDK libraries | |
import replicate | |
import stability_sdk.interfaces.gooseai.generation.generation_pb2 as generation | |
def generate_image(prompt): | |
# Make a POST request to the ClipDrop text-to-image API | |
url = 'https://clipdrop-api.co/text-to-image/v1' | |
headers = {'x-api-key': os.environ['CLIPDROP_API_KEY']} | |
data = {'prompt': prompt} | |
response = requests.post(url, headers=headers, data=data) | |
if response.status_code == 200: | |
# Get the generated image from the response | |
img = Image.open(BytesIO(response.content)) | |
return img | |
else: | |
st.error('Failed to generate image from text prompt.') | |
def upscale_image(img): | |
# Set up Stability API connection | |
stability_api = replicate.StabilityInference( | |
key=os.environ['STABILITY_API_KEY'], | |
upscale_engine="stable-diffusion-x4-latent-upscaler" | |
) | |
# Upscale the image using the Stability API | |
upscale_responses = stability_api.upscale(init_image=img) | |
if upscale_responses: | |
# Get the upscaled image from the response | |
upscaled_img = None | |
for resp in upscale_responses: | |
for artifact in resp.artifacts: | |
if artifact.type == generation.ARTIFACT_IMAGE: | |
upscaled_img = Image.open(BytesIO(artifact.binary)) | |
break | |
if upscaled_img: | |
break | |
return upscaled_img | |
else: | |
st.error('Failed to upscale the image.') | |
def gfpgan_upscale_image(img): | |
# Set up Replicate API connection | |
replicate_api = replicate.ReplicateAPI(token=os.environ['REPLICATE_API_TOKEN']) | |
# Upscale the image using GFPGAN model | |
output = replicate_api.run( | |
"tencentarc/gfpgan:9283608cc6b7be6b65a8e44983db012355fde4132009bf99d976b2f0896856a3", | |
input={"img": img, "version": "v1.4", "scale": 16} | |
) | |
if output: | |
# Get the upscaled image URI from the output | |
response = requests.get(output) | |
upscaled_img = Image.open(BytesIO(response.content)) | |
return upscaled_img | |
else: | |
st.error('Failed to upscale the image using GFPGAN.') | |
def main(): | |
st.title("Image Upscaling") | |
st.write("Enter a text prompt to generate and upscale an image.") | |
# Get user input for the text prompt | |
prompt = st.text_input("Enter a text prompt:", max_chars=1000) | |
if st.button("Generate and Upscale"): | |
# Generate the image from text prompt using ClipDrop API | |
generated_img = generate_image(prompt) | |
if generated_img: | |
st.image(generated_img, caption='Generated Image', use_column_width=True) | |
# Upscale the generated image using Stability API | |
upscaled_img = upscale_image(generated_img) | |
if upscaled_img: | |
st.image(upscaled_img, caption='Upscaled Image (Stability API)', use_column_width=True) | |
# Further upscale the image using GFPGAN | |
gfpgan_upscaled_img = gfpgan_upscale_image(upscaled_img) | |
if gfpgan_upscaled_img: | |
st.image(gfpgan_upscaled_img, caption='Upscaled Image (GFPGAN)', use_column_width=True) | |
st.success("Image generation and upscaling completed successfully.") | |
else: | |
st.error("Failed to further upscale the image using GFPGAN.") | |
else: | |
st.error("Failed to upscale the generated image.") | |
if __name__ == "__main__": | |
main() | |