Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,826 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
import huggingface_hub, spaces
|
4 |
-
huggingface_hub.snapshot_download(repo_id='tsujuifu/ml-mgie', repo_type='model', local_dir='_ckpt', local_dir_use_symlinks=False)
|
5 |
-
os.system('ls _ckpt')
|
6 |
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
import numpy as np
|
10 |
import torch as T
|
11 |
-
import transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
from conversation import conv_templates
|
14 |
-
from mgie_llava import *
|
15 |
|
16 |
-
import gradio as gr
|
17 |
|
18 |
def crop_resize(f, sz=512):
|
19 |
w, h = f.size
|
20 |
-
if w>h:
|
21 |
-
p = (w-h)//2
|
22 |
-
f = f.crop([p, 0, p+h, h])
|
23 |
-
elif h>w:
|
24 |
-
p = (h-w)//2
|
25 |
-
f = f.crop([0, p, w, p+w])
|
26 |
f = f.resize([sz, sz])
|
27 |
return f
|
28 |
-
|
29 |
-
|
|
|
30 |
if '</s>' in s: s = s[:s.index('</s>')].strip()
|
31 |
if 'alternative' in s.lower(): s = s[:s.lower().index('alternative')]
|
32 |
if '[IMG0]' in s: s = s[:s.index('[IMG0]')]
|
33 |
s = '.'.join([s.strip() for s in s.split('.')[:2]])
|
34 |
-
if s[-1]!='.': s += '.'
|
35 |
return s.strip()
|
36 |
|
37 |
DEFAULT_IMAGE_TOKEN = '<image>'
|
38 |
DEFAULT_IMAGE_PATCH_TOKEN = '<im_patch>'
|
39 |
DEFAULT_IM_START_TOKEN = '<im_start>'
|
40 |
DEFAULT_IM_END_TOKEN = '<im_end>'
|
41 |
-
PATH_LLAVA = '
|
42 |
|
43 |
tokenizer = transformers.AutoTokenizer.from_pretrained(PATH_LLAVA)
|
44 |
model = LlavaLlamaForCausalLM.from_pretrained(PATH_LLAVA, low_cpu_mem_usage=True, torch_dtype=T.float16, use_cache=True).cuda()
|
@@ -47,7 +829,7 @@ image_processor = transformers.CLIPImageProcessor.from_pretrained(model.config.m
|
|
47 |
tokenizer.padding_side = 'left'
|
48 |
tokenizer.add_tokens(['[IMG0]', '[IMG1]', '[IMG2]', '[IMG3]', '[IMG4]', '[IMG5]', '[IMG6]', '[IMG7]'], special_tokens=True)
|
49 |
model.resize_token_embeddings(len(tokenizer))
|
50 |
-
ckpt = T.load('
|
51 |
model.load_state_dict(ckpt, strict=False)
|
52 |
|
53 |
mm_use_im_start_end = getattr(model.config, 'mm_use_im_start_end', False)
|
@@ -61,26 +843,25 @@ vision_config = vision_tower.config
|
|
61 |
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
|
62 |
vision_config.use_im_start_end = mm_use_im_start_end
|
63 |
if mm_use_im_start_end: vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
|
64 |
-
image_token_len = (vision_config.image_size//vision_config.patch_size)**2
|
65 |
|
66 |
_ = model.eval()
|
67 |
|
68 |
pipe = diffusers.StableDiffusionInstructPix2PixPipeline.from_pretrained('timbrooks/instruct-pix2pix', torch_dtype=T.float16).to('cuda')
|
69 |
pipe.set_progress_bar_config(disable=True)
|
70 |
-
pipe.unet.load_state_dict(T.load('
|
71 |
print('--init MGIE--')
|
72 |
|
73 |
-
@spaces.GPU(enable_queue=True)
|
74 |
def go_mgie(img, txt, seed, cfg_txt, cfg_img):
|
75 |
EMB = ckpt['emb'].cuda()
|
76 |
with T.inference_mode(): NULL = model.edit_head(T.zeros(1, 8, 4096).half().to('cuda'), EMB)
|
77 |
-
|
78 |
img, seed = crop_resize(Image.fromarray(img).convert('RGB')), int(seed)
|
79 |
inp = img
|
80 |
|
81 |
img = image_processor.preprocess(img, return_tensors='pt')['pixel_values'][0]
|
82 |
-
txt = "what will this image be like if '%s'"%(txt)
|
83 |
-
txt = txt+'\n'+DEFAULT_IM_START_TOKEN+DEFAULT_IMAGE_PATCH_TOKEN*image_token_len+DEFAULT_IM_END_TOKEN
|
84 |
conv = conv_templates['vicuna_v1_1'].copy()
|
85 |
conv.append_message(conv.roles[0], txt), conv.append_message(conv.roles[1], None)
|
86 |
txt = conv.get_prompt()
|
@@ -89,41 +870,42 @@ def go_mgie(img, txt, seed, cfg_txt, cfg_img):
|
|
89 |
|
90 |
with T.inference_mode():
|
91 |
_ = model.cuda()
|
92 |
-
out = model.generate(txt.unsqueeze(dim=0).cuda(), images=img.half().unsqueeze(dim=0).cuda(), attention_mask=mask.unsqueeze(dim=0).cuda(),
|
93 |
-
do_sample=False, max_new_tokens=96, num_beams=1, no_repeat_ngram_size=3,
|
94 |
return_dict_in_generate=True, output_hidden_states=True)
|
95 |
out, hid = out['sequences'][0].tolist(), T.cat([x[-1] for x in out['hidden_states']], dim=1)[0]
|
96 |
-
|
97 |
-
if 32003 in out: p = out.index(32003)-1
|
98 |
-
else: p = len(hid)-9
|
99 |
-
p = min(p, len(hid)-9)
|
100 |
-
hid = hid[p:p+8]
|
101 |
|
102 |
out = remove_alter(tokenizer.decode(out))
|
103 |
_ = model.cuda()
|
104 |
emb = model.edit_head(hid.unsqueeze(dim=0), EMB)
|
105 |
-
res = pipe(image=inp, prompt_embeds=emb, negative_prompt_embeds=NULL,
|
106 |
generator=T.Generator(device='cuda').manual_seed(seed), guidance_scale=cfg_txt, image_guidance_scale=cfg_img).images[0]
|
107 |
|
108 |
return res, out
|
109 |
|
110 |
-
go_mgie(np.array(Image.open('./_input/0.jpg').convert('RGB')), 'make the frame red', 13331, 7.5, 1.5)
|
111 |
-
print('--init GO--')
|
112 |
-
|
113 |
with gr.Blocks() as app:
|
114 |
gr.Markdown(
|
115 |
"""
|
116 |
-
# MagiX: Edit Personalized Images using Gen AI
|
117 |
"""
|
118 |
)
|
119 |
-
with gr.Row():
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
127 |
btn_sub.click(fn=go_mgie, inputs=[inp, txt, seed, cfg_txt, cfg_img], outputs=[res, out])
|
128 |
-
|
129 |
app.launch()
|
|
|
1 |
+
!pip install sentencepiece
|
2 |
+
!pip install git+https://github.com/huggingface/transformers.git@cae78c46
|
3 |
+
!pip install diffusers
|
4 |
+
!pip install tokenizers==0.12.1
|
5 |
+
!pip install datasets
|
6 |
+
!pip install accelerate
|
7 |
+
!pip install evaluate
|
8 |
+
!pip install gradio==4.12.0
|
9 |
+
!pip install gradio_client==0.8.0
|
10 |
+
!pip install -i https://download.pytorch.org/whl/cu118 torch==2.0 torchvision==0.15 torchaudio==2.0
|
11 |
+
#conversation.py:
|
12 |
+
import dataclasses
|
13 |
+
from enum import auto, Enum
|
14 |
+
from typing import List, Tuple
|
15 |
|
|
|
|
|
|
|
16 |
|
17 |
+
class SeparatorStyle(Enum):
|
18 |
+
"""Different separator style."""
|
19 |
+
SINGLE = auto()
|
20 |
+
TWO = auto()
|
21 |
+
MPT = auto()
|
22 |
+
|
23 |
+
|
24 |
+
@dataclasses.dataclass
|
25 |
+
class Conversation:
|
26 |
+
"""A class that keeps all conversation history."""
|
27 |
+
system: str
|
28 |
+
roles: List[str]
|
29 |
+
messages: List[List[str]]
|
30 |
+
offset: int
|
31 |
+
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
32 |
+
sep: str = "###"
|
33 |
+
sep2: str = None
|
34 |
+
version: str = "Unknown"
|
35 |
+
|
36 |
+
skip_next: bool = False
|
37 |
+
|
38 |
+
def get_prompt(self):
|
39 |
+
if self.sep_style == SeparatorStyle.SINGLE:
|
40 |
+
ret = self.system + self.sep
|
41 |
+
for role, message in self.messages:
|
42 |
+
if message:
|
43 |
+
if type(message) is tuple:
|
44 |
+
message, _, _ = message
|
45 |
+
ret += role + ": " + message + self.sep
|
46 |
+
else:
|
47 |
+
ret += role + ":"
|
48 |
+
return ret
|
49 |
+
elif self.sep_style == SeparatorStyle.TWO:
|
50 |
+
seps = [self.sep, self.sep2]
|
51 |
+
ret = self.system + seps[0]
|
52 |
+
for i, (role, message) in enumerate(self.messages):
|
53 |
+
if message:
|
54 |
+
if type(message) is tuple:
|
55 |
+
message, _, _ = message
|
56 |
+
ret += role + ": " + message + seps[i % 2]
|
57 |
+
else:
|
58 |
+
ret += role + ":"
|
59 |
+
return ret
|
60 |
+
if self.sep_style == SeparatorStyle.MPT:
|
61 |
+
ret = self.system + self.sep
|
62 |
+
for role, message in self.messages:
|
63 |
+
if message:
|
64 |
+
if type(message) is tuple:
|
65 |
+
message, _, _ = message
|
66 |
+
ret += role + message + self.sep
|
67 |
+
else:
|
68 |
+
ret += role
|
69 |
+
return ret
|
70 |
+
else:
|
71 |
+
raise ValueError(f"Invalid style: {self.sep_style}")
|
72 |
+
|
73 |
+
def append_message(self, role, message):
|
74 |
+
self.messages.append([role, message])
|
75 |
+
|
76 |
+
def get_images(self, return_pil=False):
|
77 |
+
images = []
|
78 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
79 |
+
if i % 2 == 0:
|
80 |
+
if type(msg) is tuple:
|
81 |
+
import base64
|
82 |
+
from io import BytesIO
|
83 |
+
from PIL import Image
|
84 |
+
msg, image, image_process_mode = msg
|
85 |
+
if image_process_mode == "Pad":
|
86 |
+
def expand2square(pil_img, background_color=(122, 116, 104)):
|
87 |
+
width, height = pil_img.size
|
88 |
+
if width == height:
|
89 |
+
return pil_img
|
90 |
+
elif width > height:
|
91 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
92 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
93 |
+
return result
|
94 |
+
else:
|
95 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
96 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
97 |
+
return result
|
98 |
+
image = expand2square(image)
|
99 |
+
elif image_process_mode == "Crop":
|
100 |
+
pass
|
101 |
+
elif image_process_mode == "Resize":
|
102 |
+
image = image.resize((224, 224))
|
103 |
+
else:
|
104 |
+
raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
|
105 |
+
max_hw, min_hw = max(image.size), min(image.size)
|
106 |
+
aspect_ratio = max_hw / min_hw
|
107 |
+
max_len, min_len = 800, 400
|
108 |
+
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
|
109 |
+
longest_edge = int(shortest_edge * aspect_ratio)
|
110 |
+
W, H = image.size
|
111 |
+
if H > W:
|
112 |
+
H, W = longest_edge, shortest_edge
|
113 |
+
else:
|
114 |
+
H, W = shortest_edge, longest_edge
|
115 |
+
image = image.resize((W, H))
|
116 |
+
if return_pil:
|
117 |
+
images.append(image)
|
118 |
+
else:
|
119 |
+
buffered = BytesIO()
|
120 |
+
image.save(buffered, format="JPEG")
|
121 |
+
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
|
122 |
+
images.append(img_b64_str)
|
123 |
+
return images
|
124 |
+
|
125 |
+
def to_gradio_chatbot(self):
|
126 |
+
ret = []
|
127 |
+
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
128 |
+
if i % 2 == 0:
|
129 |
+
if type(msg) is tuple:
|
130 |
+
import base64
|
131 |
+
from io import BytesIO
|
132 |
+
msg, image, image_process_mode = msg
|
133 |
+
max_hw, min_hw = max(image.size), min(image.size)
|
134 |
+
aspect_ratio = max_hw / min_hw
|
135 |
+
max_len, min_len = 800, 400
|
136 |
+
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
|
137 |
+
longest_edge = int(shortest_edge * aspect_ratio)
|
138 |
+
W, H = image.size
|
139 |
+
if H > W:
|
140 |
+
H, W = longest_edge, shortest_edge
|
141 |
+
else:
|
142 |
+
H, W = shortest_edge, longest_edge
|
143 |
+
image = image.resize((W, H))
|
144 |
+
# image = image.resize((224, 224))
|
145 |
+
buffered = BytesIO()
|
146 |
+
image.save(buffered, format="JPEG")
|
147 |
+
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
|
148 |
+
img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
|
149 |
+
msg = msg.replace('<image>', img_str)
|
150 |
+
ret.append([msg, None])
|
151 |
+
else:
|
152 |
+
ret[-1][-1] = msg
|
153 |
+
return ret
|
154 |
+
|
155 |
+
def copy(self):
|
156 |
+
return Conversation(
|
157 |
+
system=self.system,
|
158 |
+
roles=self.roles,
|
159 |
+
messages=[[x, y] for x, y in self.messages],
|
160 |
+
offset=self.offset,
|
161 |
+
sep_style=self.sep_style,
|
162 |
+
sep=self.sep,
|
163 |
+
sep2=self.sep2)
|
164 |
+
|
165 |
+
def dict(self):
|
166 |
+
if len(self.get_images()) > 0:
|
167 |
+
return {
|
168 |
+
"system": self.system,
|
169 |
+
"roles": self.roles,
|
170 |
+
"messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
|
171 |
+
"offset": self.offset,
|
172 |
+
"sep": self.sep,
|
173 |
+
"sep2": self.sep2,
|
174 |
+
}
|
175 |
+
return {
|
176 |
+
"system": self.system,
|
177 |
+
"roles": self.roles,
|
178 |
+
"messages": self.messages,
|
179 |
+
"offset": self.offset,
|
180 |
+
"sep": self.sep,
|
181 |
+
"sep2": self.sep2,
|
182 |
+
}
|
183 |
+
|
184 |
+
|
185 |
+
conv_v1 = Conversation(
|
186 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
187 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
188 |
+
roles=("Human", "Assistant"),
|
189 |
+
messages=(
|
190 |
+
("Human", "Give three tips for staying healthy."),
|
191 |
+
("Assistant",
|
192 |
+
"Sure, here are three tips for staying healthy:\n"
|
193 |
+
"1. Exercise regularly: Regular physical activity can help improve your overall health and wellbeing. "
|
194 |
+
"It can also help reduce your risk of chronic conditions such as obesity, diabetes, heart disease, "
|
195 |
+
"and certain cancers. Aim for at least 150 minutes of moderate-intensity aerobic exercise or "
|
196 |
+
"75 minutes of vigorous-intensity aerobic exercise per week, along with muscle-strengthening "
|
197 |
+
"activities at least two days per week.\n"
|
198 |
+
"2. Eat a balanced diet: Eating a balanced diet that is rich in fruits, "
|
199 |
+
"vegetables, whole grains, lean proteins, and healthy fats can help support "
|
200 |
+
"your overall health. Try to limit your intake of processed and high-sugar foods, "
|
201 |
+
"and aim to drink plenty of water throughout the day.\n"
|
202 |
+
"3. Get enough sleep: Getting enough quality sleep is essential for your physical "
|
203 |
+
"and mental health. Adults should aim for seven to nine hours of sleep per night. "
|
204 |
+
"Establish a regular sleep schedule and try to create a relaxing bedtime routine to "
|
205 |
+
"help improve the quality of your sleep.")
|
206 |
+
),
|
207 |
+
offset=2,
|
208 |
+
sep_style=SeparatorStyle.SINGLE,
|
209 |
+
sep="###",
|
210 |
+
)
|
211 |
+
|
212 |
+
conv_v1_2 = Conversation(
|
213 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
214 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
215 |
+
roles=("Human", "Assistant"),
|
216 |
+
messages=(
|
217 |
+
("Human", "What are the key differences between renewable and non-renewable energy sources?"),
|
218 |
+
("Assistant",
|
219 |
+
"Renewable energy sources are those that can be replenished naturally in a relatively "
|
220 |
+
"short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
|
221 |
+
"Non-renewable energy sources, on the other hand, are finite and will eventually be "
|
222 |
+
"depleted, such as coal, oil, and natural gas. Here are some key differences between "
|
223 |
+
"renewable and non-renewable energy sources:\n"
|
224 |
+
"1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
|
225 |
+
"energy sources are finite and will eventually run out.\n"
|
226 |
+
"2. Environmental impact: Renewable energy sources have a much lower environmental impact "
|
227 |
+
"than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
|
228 |
+
"and other negative effects.\n"
|
229 |
+
"3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
|
230 |
+
"have lower operational costs than non-renewable sources.\n"
|
231 |
+
"4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
|
232 |
+
"locations than non-renewable sources.\n"
|
233 |
+
"5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
|
234 |
+
"situations and needs, while non-renewable sources are more rigid and inflexible.\n"
|
235 |
+
"6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
|
236 |
+
"non-renewable sources are not, and their depletion can lead to economic and social instability.\n")
|
237 |
+
),
|
238 |
+
offset=2,
|
239 |
+
sep_style=SeparatorStyle.SINGLE,
|
240 |
+
sep="###",
|
241 |
+
)
|
242 |
+
|
243 |
+
conv_vicuna_v1_1 = Conversation(
|
244 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
245 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
|
246 |
+
roles=("USER", "ASSISTANT"),
|
247 |
+
version="v1",
|
248 |
+
messages=(),
|
249 |
+
offset=0,
|
250 |
+
sep_style=SeparatorStyle.TWO,
|
251 |
+
sep=" ",
|
252 |
+
sep2="</s>",
|
253 |
+
)
|
254 |
+
|
255 |
+
conv_mpt = Conversation(
|
256 |
+
system="""system
|
257 |
+
- You are a helpful language and vision assistant.
|
258 |
+
- You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.
|
259 |
+
- You should follow the instructions carefully and explain your answers in detail.""",
|
260 |
+
roles=("user\n", "assistant\n"),
|
261 |
+
version="mpt",
|
262 |
+
messages=(),
|
263 |
+
offset=0,
|
264 |
+
sep_style=SeparatorStyle.MPT,
|
265 |
+
sep="",
|
266 |
+
)
|
267 |
+
|
268 |
+
conv_mpt_text = Conversation(
|
269 |
+
system="""system
|
270 |
+
- You are a helpful assistant chatbot trained by MosaicML.
|
271 |
+
- You answer questions.
|
272 |
+
- You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
|
273 |
+
- You are more than just an information source, you are also able to write poetry, short stories, and make jokes.""",
|
274 |
+
roles=("user\n", "assistant\n"),
|
275 |
+
version="mpt",
|
276 |
+
messages=(),
|
277 |
+
offset=0,
|
278 |
+
sep_style=SeparatorStyle.MPT,
|
279 |
+
sep="",
|
280 |
+
)
|
281 |
+
|
282 |
+
conv_bair_v1 = Conversation(
|
283 |
+
system="BEGINNING OF CONVERSATION:",
|
284 |
+
roles=("USER", "GPT"),
|
285 |
+
messages=(),
|
286 |
+
offset=0,
|
287 |
+
sep_style=SeparatorStyle.TWO,
|
288 |
+
sep=" ",
|
289 |
+
sep2="</s>",
|
290 |
+
)
|
291 |
+
|
292 |
+
simple_conv = Conversation(
|
293 |
+
system="A chat between a curious human and an artificial intelligence assistant. "
|
294 |
+
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
295 |
+
roles=("Human", "Assistant"),
|
296 |
+
messages=(
|
297 |
+
("Human", "Hi!"),
|
298 |
+
("Assistant", "Hi there! How can I help you today?")
|
299 |
+
),
|
300 |
+
offset=2,
|
301 |
+
sep_style=SeparatorStyle.SINGLE,
|
302 |
+
sep="###",
|
303 |
+
)
|
304 |
+
|
305 |
+
simple_conv_multimodal = Conversation(
|
306 |
+
system="You are LLaVA, a large language and vision assistant trained by UW Madison WAIV Lab."
|
307 |
+
"You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
308 |
+
"Follow the instructions carefully and explain your answers in detail.",
|
309 |
+
roles=("Human", "Assistant"),
|
310 |
+
messages=(
|
311 |
+
("Human", "Hi!"),
|
312 |
+
("Assistant", "Hi there! How can I help you today?\n")
|
313 |
+
),
|
314 |
+
offset=2,
|
315 |
+
sep_style=SeparatorStyle.SINGLE,
|
316 |
+
sep="###",
|
317 |
+
)
|
318 |
+
|
319 |
+
simple_conv_mpt_multimodal = Conversation(
|
320 |
+
system="""system
|
321 |
+
- You are LLaVA, a large language and vision assistant trained by UW Madison WAIV Lab.
|
322 |
+
- You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.
|
323 |
+
- You should follow the instructions carefully and explain your answers in detail.""",
|
324 |
+
roles=("user\n", "assistant\n"),
|
325 |
+
version="mpt",
|
326 |
+
messages=(),
|
327 |
+
offset=0,
|
328 |
+
sep_style=SeparatorStyle.MPT,
|
329 |
+
sep="",
|
330 |
+
)
|
331 |
+
|
332 |
+
simple_conv_legacy = Conversation(
|
333 |
+
system="You are LLaVA, a large language model trained by UW Madison WAIV Lab."
|
334 |
+
"You are designed to assist human with a variety of tasks using natural language."
|
335 |
+
"Follow the instructions carefully.",
|
336 |
+
roles=("Human", "Assistant"),
|
337 |
+
messages=(
|
338 |
+
("Human", "Hi!\n\n### Response:"),
|
339 |
+
("Assistant", "Hi there! How can I help you today?\n")
|
340 |
+
),
|
341 |
+
offset=2,
|
342 |
+
sep_style=SeparatorStyle.SINGLE,
|
343 |
+
sep="###",
|
344 |
+
)
|
345 |
+
|
346 |
+
conv_llava_v1 = Conversation(
|
347 |
+
system="You are LLaVA, a large language and vision assistant trained by UW Madison WAIV Lab."
|
348 |
+
"You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
349 |
+
"Follow the instructions carefully and explain your answers in detail.",
|
350 |
+
roles=("USER", "ASSISTANT"),
|
351 |
+
version="v1",
|
352 |
+
messages=(),
|
353 |
+
offset=0,
|
354 |
+
sep_style=SeparatorStyle.TWO,
|
355 |
+
sep=" ",
|
356 |
+
sep2="</s>",
|
357 |
+
)
|
358 |
+
|
359 |
+
default_conversation = conv_v1_2
|
360 |
+
conv_templates = {
|
361 |
+
"default": conv_v1_2,
|
362 |
+
"simple": simple_conv,
|
363 |
+
"simple_legacy": simple_conv_legacy,
|
364 |
+
"multimodal": simple_conv_multimodal,
|
365 |
+
"mpt_multimodal": simple_conv_mpt_multimodal,
|
366 |
+
"llava_v1": conv_llava_v1,
|
367 |
+
|
368 |
+
# fastchat
|
369 |
+
"v1": conv_v1_2,
|
370 |
+
"bair_v1": conv_bair_v1,
|
371 |
+
"vicuna_v1_1": conv_vicuna_v1_1,
|
372 |
+
"mpt": conv_mpt,
|
373 |
+
"mpt_text": conv_mpt_text,
|
374 |
+
}
|
375 |
+
|
376 |
+
|
377 |
+
if __name__ == "__main__":
|
378 |
+
print(default_conversation.get_prompt())
|
379 |
+
#mgie_llava.py:
|
380 |
+
from typing import List, Optional, Tuple, Union
|
381 |
+
|
382 |
+
import torch
|
383 |
+
import torch.nn as nn
|
384 |
+
import torch.nn.functional as F
|
385 |
+
from torch.nn import CrossEntropyLoss
|
386 |
+
|
387 |
+
from transformers import AutoConfig, AutoModelForCausalLM, \
|
388 |
+
LlamaConfig, LlamaModel, LlamaForCausalLM, \
|
389 |
+
CLIPVisionModel, CLIPImageProcessor
|
390 |
+
|
391 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
392 |
+
|
393 |
+
import os, diffusers
|
394 |
+
|
395 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
396 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
397 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
398 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
399 |
+
|
400 |
+
|
401 |
+
class LlavaConfig(LlamaConfig):
|
402 |
+
model_type = "llava"
|
403 |
+
|
404 |
+
|
405 |
+
class LlavaLlamaModel(LlamaModel):
|
406 |
+
config_class = LlavaConfig
|
407 |
+
|
408 |
+
def __init__(self, config: LlamaConfig):
|
409 |
+
super(LlavaLlamaModel, self).__init__(config)
|
410 |
+
|
411 |
+
if hasattr(config, "mm_vision_tower"):
|
412 |
+
# HACK: for FSDP
|
413 |
+
self.vision_tower = [CLIPVisionModel.from_pretrained(config.mm_vision_tower)]
|
414 |
+
# self.vision_tower = CLIPVisionModel.from_pretrained(config.mm_vision_tower)
|
415 |
+
|
416 |
+
if hasattr(config, "use_mm_proj"):
|
417 |
+
self.mm_projector = nn.Linear(config.mm_hidden_size, config.hidden_size)
|
418 |
+
|
419 |
+
def get_vision_tower(self):
|
420 |
+
vision_tower = getattr(self, 'vision_tower', None)
|
421 |
+
if type(vision_tower) is list:
|
422 |
+
vision_tower = vision_tower[0]
|
423 |
+
return vision_tower
|
424 |
+
|
425 |
+
def initialize_vision_modules(self, vision_tower, mm_vision_select_layer,
|
426 |
+
pretrain_mm_mlp_adapter=None, fsdp=None):
|
427 |
+
self.config.mm_vision_tower = vision_tower
|
428 |
+
|
429 |
+
image_processor = CLIPImageProcessor.from_pretrained(vision_tower)
|
430 |
+
|
431 |
+
if not hasattr(self, 'vision_tower'):
|
432 |
+
vision_tower = CLIPVisionModel.from_pretrained(vision_tower)
|
433 |
+
else:
|
434 |
+
vision_tower = self.vision_tower[0]
|
435 |
+
vision_tower.requires_grad_(False)
|
436 |
+
|
437 |
+
if fsdp is not None and len(fsdp) > 0:
|
438 |
+
self.vision_tower = [vision_tower]
|
439 |
+
else:
|
440 |
+
self.vision_tower = vision_tower
|
441 |
+
|
442 |
+
vision_config = vision_tower.config
|
443 |
+
num_patches = (vision_config.image_size // vision_config.patch_size) ** 2
|
444 |
+
|
445 |
+
self.config.use_mm_proj = True
|
446 |
+
self.config.mm_hidden_size = vision_config.hidden_size
|
447 |
+
self.config.mm_vision_select_layer = mm_vision_select_layer
|
448 |
+
|
449 |
+
if not hasattr(self, 'mm_projector'):
|
450 |
+
self.mm_projector = nn.Linear(vision_config.hidden_size, self.config.hidden_size)
|
451 |
+
|
452 |
+
if pretrain_mm_mlp_adapter is not None:
|
453 |
+
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
|
454 |
+
self.mm_projector.load_state_dict({k.split('.')[-1]: v for k, v in mm_projector_weights.items()})
|
455 |
+
|
456 |
+
return dict(
|
457 |
+
image_processor=image_processor,
|
458 |
+
image_token_len=num_patches,
|
459 |
+
vision_config=vision_config
|
460 |
+
)
|
461 |
+
|
462 |
+
def forward(
|
463 |
+
self,
|
464 |
+
input_ids: torch.LongTensor = None,
|
465 |
+
attention_mask: Optional[torch.Tensor] = None,
|
466 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
467 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
468 |
+
use_cache: Optional[bool] = None,
|
469 |
+
output_attentions: Optional[bool] = None,
|
470 |
+
output_hidden_states: Optional[bool] = None,
|
471 |
+
images: Optional[torch.FloatTensor] = None,
|
472 |
+
return_dict: Optional[bool] = None,
|
473 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
474 |
+
|
475 |
+
# HACK: replace back original embeddings for LLaVA pretraining
|
476 |
+
orig_embeds_params = getattr(self, 'orig_embeds_params', None)
|
477 |
+
# if orig_embeds_params is not None:
|
478 |
+
# orig_embeds_params = orig_embeds_params[0]
|
479 |
+
# with torch.no_grad():
|
480 |
+
# self.get_input_embeddings().weight.data[:-2] = orig_embeds_params[:-2].data
|
481 |
+
|
482 |
+
if inputs_embeds is None:
|
483 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
484 |
+
|
485 |
+
vision_tower = self.get_vision_tower()
|
486 |
+
if vision_tower is not None and (input_ids.shape[1] != 1 or self.training) and images is not None:
|
487 |
+
# TODO: this is a modified multimodal LLM -- Haotian Liu
|
488 |
+
with torch.no_grad():
|
489 |
+
if type(images) is list:
|
490 |
+
# variable length images
|
491 |
+
image_features = []
|
492 |
+
for image in images:
|
493 |
+
image_forward_out = vision_tower(image.unsqueeze(0), output_hidden_states=True)
|
494 |
+
select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1)
|
495 |
+
select_hidden_state = image_forward_out.hidden_states[select_hidden_state_layer]
|
496 |
+
image_feature = select_hidden_state[:, 1:]
|
497 |
+
image_features.append(image_feature)
|
498 |
+
else:
|
499 |
+
image_forward_outs = vision_tower(images.to(vision_tower.dtype), output_hidden_states=True)
|
500 |
+
select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1)
|
501 |
+
select_hidden_state = image_forward_outs.hidden_states[select_hidden_state_layer]
|
502 |
+
image_features = select_hidden_state[:, 1:].to(images.dtype)
|
503 |
+
if type(images) is list:
|
504 |
+
image_features = [self.mm_projector(image_feature)[0] for image_feature in image_features]
|
505 |
+
else:
|
506 |
+
image_features = self.mm_projector(image_features)
|
507 |
+
dummy_image_features = torch.zeros(256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype)
|
508 |
+
dummy_image_features = self.mm_projector(dummy_image_features)
|
509 |
|
510 |
+
new_input_embeds = []
|
511 |
+
cur_image_idx = 0
|
512 |
+
for cur_input_ids, cur_input_embeds in zip(input_ids, inputs_embeds):
|
513 |
+
if (cur_input_ids == vision_tower.config.im_patch_token).sum() == 0:
|
514 |
+
# multimodal LLM, but the current sample is not multimodal
|
515 |
+
cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum()
|
516 |
+
new_input_embeds.append(cur_input_embeds)
|
517 |
+
cur_image_idx += 1
|
518 |
+
continue
|
519 |
+
if vision_tower.config.use_im_start_end:
|
520 |
+
cur_image_features = image_features[cur_image_idx]
|
521 |
+
num_patches = cur_image_features.shape[0]
|
522 |
+
if (cur_input_ids == vision_tower.config.im_start_token).sum() != (cur_input_ids == vision_tower.config.im_end_token).sum():
|
523 |
+
raise ValueError("The number of image start tokens and image end tokens should be the same.")
|
524 |
+
image_start_tokens = torch.where(cur_input_ids == vision_tower.config.im_start_token)[0]
|
525 |
+
for image_start_token_pos in image_start_tokens:
|
526 |
+
cur_image_features = image_features[cur_image_idx].to(device=cur_input_embeds.device)
|
527 |
+
num_patches = cur_image_features.shape[0]
|
528 |
+
if cur_input_ids[image_start_token_pos + num_patches + 1] != vision_tower.config.im_end_token:
|
529 |
+
raise ValueError("The image end token should follow the image start token.")
|
530 |
+
if orig_embeds_params is not None:
|
531 |
+
cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(), cur_input_embeds[image_start_token_pos:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2], cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0)
|
532 |
+
else:
|
533 |
+
cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0)
|
534 |
+
cur_image_idx += 1
|
535 |
+
new_input_embeds.append(cur_new_input_embeds)
|
536 |
+
else:
|
537 |
+
cur_image_features = image_features[cur_image_idx]
|
538 |
+
num_patches = cur_image_features.shape[0]
|
539 |
+
if (cur_input_ids == vision_tower.config.im_patch_token).sum() != num_patches:
|
540 |
+
raise ValueError("The number of image patch tokens should be the same as the number of image patches.")
|
541 |
+
masked_indices = torch.where(cur_input_ids == vision_tower.config.im_patch_token)[0]
|
542 |
+
mask_index_start = masked_indices[0]
|
543 |
+
if (masked_indices != torch.arange(mask_index_start, mask_index_start+num_patches, device=masked_indices.device, dtype=masked_indices.dtype)).any():
|
544 |
+
raise ValueError("The image patch tokens should be consecutive.")
|
545 |
+
if orig_embeds_params is not None:
|
546 |
+
cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start].detach(), cur_image_features, cur_input_embeds[mask_index_start+num_patches:].detach()), dim=0)
|
547 |
+
else:
|
548 |
+
cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start], cur_image_features, cur_input_embeds[mask_index_start+num_patches:]), dim=0)
|
549 |
+
new_input_embeds.append(cur_new_input_embeds)
|
550 |
+
cur_image_idx += 1
|
551 |
+
inputs_embeds = torch.stack(new_input_embeds, dim=0)
|
552 |
+
|
553 |
+
return super(LlavaLlamaModel, self).forward(
|
554 |
+
input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values,
|
555 |
+
inputs_embeds=inputs_embeds, use_cache=use_cache,
|
556 |
+
output_attentions=output_attentions, output_hidden_states=output_hidden_states,
|
557 |
+
return_dict=return_dict
|
558 |
+
)
|
559 |
+
|
560 |
+
class EditMapper(nn.Module):
|
561 |
+
def __init__(self):
|
562 |
+
super().__init__()
|
563 |
+
|
564 |
+
self.llm2hid = nn.Linear(4096, 512)
|
565 |
+
self.query = nn.Parameter(torch.randn(1, 77, 512))
|
566 |
+
self.mapper = nn.Transformer(batch_first=True, norm_first=True,
|
567 |
+
d_model=512, nhead=4, num_encoder_layers=4, num_decoder_layers=4,
|
568 |
+
dim_feedforward=2048, dropout=0.0)
|
569 |
+
self.hid2feat = nn.Linear(512, 768)
|
570 |
+
|
571 |
+
def forward(self, llm, emb):
|
572 |
+
hid = self.llm2hid(llm+emb)
|
573 |
+
hid = self.mapper(hid, self.query.repeat(llm.shape[0], 1, 1))
|
574 |
+
feat = self.hid2feat(hid)
|
575 |
+
|
576 |
+
return feat
|
577 |
+
|
578 |
+
class LlavaLlamaForCausalLM(LlamaForCausalLM):
|
579 |
+
config_class = LlavaConfig
|
580 |
+
|
581 |
+
def __init__(self, config):
|
582 |
+
super(LlamaForCausalLM, self).__init__(config)
|
583 |
+
self.model = LlavaLlamaModel(config)
|
584 |
+
|
585 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
586 |
+
|
587 |
+
self.edit_head = EditMapper()
|
588 |
+
|
589 |
+
'''self.scheduler, self.vae, self.unet = [diffusers.DDPMScheduler.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='scheduler'),
|
590 |
+
diffusers.AutoencoderKL.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='vae'),
|
591 |
+
diffusers.UNet2DConditionModel.from_pretrained('runwayml/stable-diffusion-v1-5', subfolder='unet')]
|
592 |
+
self.vae.requires_grad_(False)
|
593 |
+
self.unet.register_to_config(in_channels=8)
|
594 |
+
with torch.no_grad():
|
595 |
+
conv = torch.nn.Conv2d(8, self.unet.conv_in.out_channels, self.unet.conv_in.kernel_size, self.unet.conv_in.stride, self.unet.conv_in.padding)
|
596 |
+
conv.weight.zero_()
|
597 |
+
conv.weight[:, :4, :, :].copy_(self.unet.conv_in.weight)
|
598 |
+
self.unet.conv_in = conv'''
|
599 |
+
|
600 |
+
# Initialize weights and apply final processing
|
601 |
+
self.post_init()
|
602 |
+
|
603 |
+
def get_model(self):
|
604 |
+
return self.model
|
605 |
+
|
606 |
+
def get_vision_tower(self):
|
607 |
+
return self.get_model().get_vision_tower()
|
608 |
+
|
609 |
+
def get_vision_tower(self):
|
610 |
+
model = self.get_model()
|
611 |
+
vision_tower = model.vision_tower
|
612 |
+
if type(vision_tower) is list:
|
613 |
+
vision_tower = vision_tower[0]
|
614 |
+
return vision_tower
|
615 |
+
|
616 |
+
def forward(
|
617 |
+
self,
|
618 |
+
input_ids: torch.LongTensor = None,
|
619 |
+
attention_mask: Optional[torch.Tensor] = None,
|
620 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
621 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
622 |
+
labels: Optional[torch.LongTensor] = None,
|
623 |
+
use_cache: Optional[bool] = None,
|
624 |
+
output_attentions: Optional[bool] = None,
|
625 |
+
output_hidden_states: Optional[bool] = None,
|
626 |
+
images: Optional[torch.FloatTensor] = None,
|
627 |
+
return_dict: Optional[bool] = None,
|
628 |
+
p2p_inp=None, p2p_ans=None
|
629 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
630 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
631 |
+
output_hidden_states = (
|
632 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
633 |
+
)
|
634 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
635 |
+
|
636 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
637 |
+
outputs = self.model(
|
638 |
+
input_ids=input_ids,
|
639 |
+
attention_mask=attention_mask,
|
640 |
+
past_key_values=past_key_values,
|
641 |
+
inputs_embeds=inputs_embeds,
|
642 |
+
use_cache=use_cache,
|
643 |
+
output_attentions=output_attentions,
|
644 |
+
output_hidden_states=output_hidden_states,
|
645 |
+
return_dict=return_dict,
|
646 |
+
images=images
|
647 |
+
)
|
648 |
+
|
649 |
+
hidden_states = outputs[0]
|
650 |
+
logits = self.lm_head(hidden_states)
|
651 |
+
|
652 |
+
loss = None
|
653 |
+
if labels is not None:
|
654 |
+
# Shift so that tokens < n predict n
|
655 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
656 |
+
shift_labels = labels[..., 1:].contiguous()
|
657 |
+
# Flatten the tokens
|
658 |
+
loss_fct = CrossEntropyLoss()
|
659 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
660 |
+
shift_labels = shift_labels.view(-1)
|
661 |
+
# Enable model/pipeline parallelism
|
662 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
663 |
+
loss = loss_fct(shift_logits, shift_labels)
|
664 |
+
|
665 |
+
if labels is not None:
|
666 |
+
llm = []
|
667 |
+
for i in range(labels.shape[0]):
|
668 |
+
try: p = labels[i].data.cpu().tolist().index(32003)-1
|
669 |
+
except: p = len(labels[i])-9
|
670 |
+
p = min(len(hidden_states[i])-9, p)
|
671 |
+
llm.append(hidden_states[i][p:p+8].unsqueeze(0))
|
672 |
+
llm = torch.cat(llm, dim=0)
|
673 |
+
hid_edit = self.edit_head(llm, self.model.embed_tokens.weight[-8:].unsqueeze(dim=0).repeat(labels.shape[0], 1, 1))
|
674 |
+
|
675 |
+
B, DROP = labels.shape[0], 0.05
|
676 |
+
|
677 |
+
hid_null = self.edit_head(torch.zeros(B, 8, 4096, device=labels.device),
|
678 |
+
self.model.embed_tokens.weight[-8:].unsqueeze(dim=0).repeat(labels.shape[0], 1, 1))
|
679 |
+
|
680 |
+
with torch.no_grad():
|
681 |
+
lat_ans, lat_inp = self.vae.encode(p2p_ans).latent_dist.sample()*self.vae.config.scaling_factor, self.vae.encode(p2p_inp).latent_dist.mode()
|
682 |
+
lat_ans, lat_inp = [torch.from_numpy(lat_ans.data.cpu().float().numpy()).to(lat_ans.device),
|
683 |
+
torch.from_numpy(lat_inp.data.cpu().float().numpy()).to(lat_inp.device)]
|
684 |
+
|
685 |
+
noise = torch.randn_like(lat_ans)
|
686 |
+
ts = torch.randint(0, self.scheduler.config.num_train_timesteps, (B, ), device=noise.device).long()
|
687 |
+
lat_noise = self.scheduler.add_noise(lat_ans, noise, ts)
|
688 |
+
|
689 |
+
prob = torch.rand(B, device=lat_ans.device)
|
690 |
+
mask = (prob<(DROP*2)).reshape(B, 1, 1)
|
691 |
+
hid_edit = torch.where(mask, hid_null, hid_edit)
|
692 |
+
mask = (1.0-((prob>=DROP).to(lat_inp.dtype)*(prob<(DROP*3)).to(lat_inp.dtype))).reshape(B, 1, 1, 1)
|
693 |
+
lat_inp *= mask
|
694 |
+
|
695 |
+
out = self.unet(torch.cat([lat_noise, lat_inp], dim=1), ts, hid_edit).sample
|
696 |
+
|
697 |
+
loss_ce, loss_edit = loss, nn.functional.mse_loss(out, noise, reduction='mean')
|
698 |
+
if int(os.environ['LOCAL_RANK'])==0: print('loss_ce:', loss_ce, '/', 'loss_edit:', loss_edit)
|
699 |
+
loss = loss_ce+loss_edit*0.5
|
700 |
+
|
701 |
+
if not return_dict:
|
702 |
+
output = (logits,) + outputs[1:]
|
703 |
+
return (loss,) + output if loss is not None else output
|
704 |
+
|
705 |
+
return CausalLMOutputWithPast(
|
706 |
+
loss=loss,
|
707 |
+
logits=logits,
|
708 |
+
past_key_values=outputs.past_key_values,
|
709 |
+
hidden_states=outputs.hidden_states,
|
710 |
+
attentions=outputs.attentions,
|
711 |
+
)
|
712 |
+
|
713 |
+
def prepare_inputs_for_generation(
|
714 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
715 |
+
):
|
716 |
+
if past_key_values:
|
717 |
+
input_ids = input_ids[:, -1:]
|
718 |
+
|
719 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
720 |
+
if inputs_embeds is not None and past_key_values is None:
|
721 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
722 |
+
else:
|
723 |
+
model_inputs = {"input_ids": input_ids}
|
724 |
+
|
725 |
+
model_inputs.update(
|
726 |
+
{
|
727 |
+
"past_key_values": past_key_values,
|
728 |
+
"use_cache": kwargs.get("use_cache"),
|
729 |
+
"attention_mask": attention_mask,
|
730 |
+
"images": kwargs.get("images", None),
|
731 |
+
}
|
732 |
+
)
|
733 |
+
return model_inputs
|
734 |
+
|
735 |
+
def initialize_vision_tokenizer(self, mm_use_im_start_end, tokenizer, device,
|
736 |
+
tune_mm_mlp_adapter=False, pretrain_mm_mlp_adapter=None):
|
737 |
+
vision_config = self.get_vision_tower().config
|
738 |
+
vision_config.use_im_start_end = mm_use_im_start_end
|
739 |
+
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
740 |
+
self.resize_token_embeddings(len(tokenizer))
|
741 |
+
|
742 |
+
if mm_use_im_start_end:
|
743 |
+
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
744 |
+
self.resize_token_embeddings(len(tokenizer))
|
745 |
+
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
|
746 |
+
|
747 |
+
if num_new_tokens > 0:
|
748 |
+
input_embeddings = self.get_input_embeddings().weight.data
|
749 |
+
output_embeddings = self.get_output_embeddings().weight.data
|
750 |
+
|
751 |
+
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
752 |
+
dim=0, keepdim=True)
|
753 |
+
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
754 |
+
dim=0, keepdim=True)
|
755 |
+
|
756 |
+
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
757 |
+
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
758 |
+
|
759 |
+
if tune_mm_mlp_adapter:
|
760 |
+
self.get_model().orig_embeds_params = [self.get_input_embeddings().weight.data.clone().to(device=device)]
|
761 |
+
for p in self.get_input_embeddings().parameters():
|
762 |
+
p.requires_grad = True
|
763 |
+
for p in self.get_output_embeddings().parameters():
|
764 |
+
p.requires_grad = False
|
765 |
+
|
766 |
+
if pretrain_mm_mlp_adapter:
|
767 |
+
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
|
768 |
+
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
|
769 |
+
assert num_new_tokens == 2
|
770 |
+
if input_embeddings.shape == embed_tokens_weight.shape:
|
771 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
|
772 |
+
elif embed_tokens_weight.shape[0] == num_new_tokens:
|
773 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight
|
774 |
+
else:
|
775 |
+
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
|
776 |
+
|
777 |
+
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
|
778 |
+
|
779 |
+
AutoConfig.register("llava", LlavaConfig)
|
780 |
+
AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM)
|
781 |
+
#main.py:
|
782 |
+
from google.colab import drive
|
783 |
+
drive.mount('/content/drive')
|
784 |
+
|
785 |
+
import os
|
786 |
+
from PIL import Image
|
787 |
import numpy as np
|
788 |
import torch as T
|
789 |
+
import transformers
|
790 |
+
import diffusers
|
791 |
+
import gradio as gr
|
792 |
+
import huggingface_hub
|
793 |
+
|
794 |
+
CKPT_DIR = '/content/drive/My Drive/_ckpt'
|
795 |
+
|
796 |
|
|
|
|
|
797 |
|
|
|
798 |
|
799 |
def crop_resize(f, sz=512):
|
800 |
w, h = f.size
|
801 |
+
if w > h:
|
802 |
+
p = (w - h) // 2
|
803 |
+
f = f.crop([p, 0, p + h, h])
|
804 |
+
elif h > w:
|
805 |
+
p = (h - w) // 2
|
806 |
+
f = f.crop([0, p, w, p + w])
|
807 |
f = f.resize([sz, sz])
|
808 |
return f
|
809 |
+
|
810 |
+
def remove_alter(s):
|
811 |
+
if 'ASSISTANT:' in s: s = s[s.index('ASSISTANT:') + 10:].strip()
|
812 |
if '</s>' in s: s = s[:s.index('</s>')].strip()
|
813 |
if 'alternative' in s.lower(): s = s[:s.lower().index('alternative')]
|
814 |
if '[IMG0]' in s: s = s[:s.index('[IMG0]')]
|
815 |
s = '.'.join([s.strip() for s in s.split('.')[:2]])
|
816 |
+
if s[-1] != '.': s += '.'
|
817 |
return s.strip()
|
818 |
|
819 |
DEFAULT_IMAGE_TOKEN = '<image>'
|
820 |
DEFAULT_IMAGE_PATCH_TOKEN = '<im_patch>'
|
821 |
DEFAULT_IM_START_TOKEN = '<im_start>'
|
822 |
DEFAULT_IM_END_TOKEN = '<im_end>'
|
823 |
+
PATH_LLAVA = f'{CKPT_DIR}/LLaVA-7B-v1'
|
824 |
|
825 |
tokenizer = transformers.AutoTokenizer.from_pretrained(PATH_LLAVA)
|
826 |
model = LlavaLlamaForCausalLM.from_pretrained(PATH_LLAVA, low_cpu_mem_usage=True, torch_dtype=T.float16, use_cache=True).cuda()
|
|
|
829 |
tokenizer.padding_side = 'left'
|
830 |
tokenizer.add_tokens(['[IMG0]', '[IMG1]', '[IMG2]', '[IMG3]', '[IMG4]', '[IMG5]', '[IMG6]', '[IMG7]'], special_tokens=True)
|
831 |
model.resize_token_embeddings(len(tokenizer))
|
832 |
+
ckpt = T.load(f'{CKPT_DIR}/mgie_7b/mllm.pt', map_location='cpu')
|
833 |
model.load_state_dict(ckpt, strict=False)
|
834 |
|
835 |
mm_use_im_start_end = getattr(model.config, 'mm_use_im_start_end', False)
|
|
|
843 |
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
|
844 |
vision_config.use_im_start_end = mm_use_im_start_end
|
845 |
if mm_use_im_start_end: vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
|
846 |
+
image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2
|
847 |
|
848 |
_ = model.eval()
|
849 |
|
850 |
pipe = diffusers.StableDiffusionInstructPix2PixPipeline.from_pretrained('timbrooks/instruct-pix2pix', torch_dtype=T.float16).to('cuda')
|
851 |
pipe.set_progress_bar_config(disable=True)
|
852 |
+
pipe.unet.load_state_dict(T.load(f'{CKPT_DIR}/mgie_7b/unet.pt', map_location='cpu'))
|
853 |
print('--init MGIE--')
|
854 |
|
|
|
855 |
def go_mgie(img, txt, seed, cfg_txt, cfg_img):
|
856 |
EMB = ckpt['emb'].cuda()
|
857 |
with T.inference_mode(): NULL = model.edit_head(T.zeros(1, 8, 4096).half().to('cuda'), EMB)
|
858 |
+
|
859 |
img, seed = crop_resize(Image.fromarray(img).convert('RGB')), int(seed)
|
860 |
inp = img
|
861 |
|
862 |
img = image_processor.preprocess(img, return_tensors='pt')['pixel_values'][0]
|
863 |
+
txt = "what will this image be like if '%s'" % (txt)
|
864 |
+
txt = txt + '\n' + DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len + DEFAULT_IM_END_TOKEN
|
865 |
conv = conv_templates['vicuna_v1_1'].copy()
|
866 |
conv.append_message(conv.roles[0], txt), conv.append_message(conv.roles[1], None)
|
867 |
txt = conv.get_prompt()
|
|
|
870 |
|
871 |
with T.inference_mode():
|
872 |
_ = model.cuda()
|
873 |
+
out = model.generate(txt.unsqueeze(dim=0).cuda(), images=img.half().unsqueeze(dim=0).cuda(), attention_mask=mask.unsqueeze(dim=0).cuda(),
|
874 |
+
do_sample=False, max_new_tokens=96, num_beams=1, no_repeat_ngram_size=3,
|
875 |
return_dict_in_generate=True, output_hidden_states=True)
|
876 |
out, hid = out['sequences'][0].tolist(), T.cat([x[-1] for x in out['hidden_states']], dim=1)[0]
|
877 |
+
|
878 |
+
if 32003 in out: p = out.index(32003) - 1
|
879 |
+
else: p = len(hid) - 9
|
880 |
+
p = min(p, len(hid) - 9)
|
881 |
+
hid = hid[p:p + 8]
|
882 |
|
883 |
out = remove_alter(tokenizer.decode(out))
|
884 |
_ = model.cuda()
|
885 |
emb = model.edit_head(hid.unsqueeze(dim=0), EMB)
|
886 |
+
res = pipe(image=inp, prompt_embeds=emb, negative_prompt_embeds=NULL,
|
887 |
generator=T.Generator(device='cuda').manual_seed(seed), guidance_scale=cfg_txt, image_guidance_scale=cfg_img).images[0]
|
888 |
|
889 |
return res, out
|
890 |
|
|
|
|
|
|
|
891 |
with gr.Blocks() as app:
|
892 |
gr.Markdown(
|
893 |
"""
|
894 |
+
# MagiX: Edit Personalized Images using Gen AI by Ateeb Taser
|
895 |
"""
|
896 |
)
|
897 |
+
with gr.Row():
|
898 |
+
inp, res = [gr.Image(height=384, width=384, label='Input Image', interactive=True),
|
899 |
+
gr.Image(height=384, width=384, label='Goal Image', interactive=True)]
|
900 |
+
with gr.Row():
|
901 |
+
txt, out = [gr.Textbox(label='Instruction', interactive=True),
|
902 |
+
gr.Textbox(label='Expressive Instruction', interactive=False)]
|
903 |
+
with gr.Row():
|
904 |
+
seed, cfg_txt, cfg_img = [gr.Number(value=13331, label='Seed', interactive=True),
|
905 |
+
gr.Number(value=7.5, label='Text CFG', interactive=True),
|
906 |
+
gr.Number(value=1.5, label='Image CFG', interactive=True)]
|
907 |
+
with gr.Row():
|
908 |
+
btn_sub = gr.Button('Submit')
|
909 |
btn_sub.click(fn=go_mgie, inputs=[inp, txt, seed, cfg_txt, cfg_img], outputs=[res, out])
|
910 |
+
|
911 |
app.launch()
|