Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,75 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
|
|
5 |
|
6 |
-
def
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
def
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
gr.
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
prompt = gr.Textbox(label="Prompt", placeholder="Enter your prompt here")
|
37 |
-
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="Enter negative prompt here (optional)")
|
38 |
-
with gr.Row():
|
39 |
num_samples = gr.Number(label="Number of Samples", value=1)
|
40 |
guidance_scale = gr.Number(label="Guidance Scale", value=7.5)
|
41 |
-
with gr.Row():
|
42 |
height = gr.Number(label="Height", value=512)
|
43 |
width = gr.Number(label="Width", value=512)
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
50 |
|
51 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
import shutil
|
4 |
+
from main import fine_tune_model
|
5 |
+
from diffusers import StableDiffusionPipeline, DDIMScheduler
|
6 |
+
import torch
|
7 |
|
8 |
+
MODEL_NAME = "runwayml/stable-diffusion-v1-5"
|
9 |
+
OUTPUT_DIR = "/home/user/app/stable_diffusion_weights/custom_model"
|
10 |
|
11 |
+
def fine_tune(instance_prompt, image1, image2=None):
|
12 |
+
instance_data_dir = "/home/user/app/instance_images"
|
13 |
+
|
14 |
+
try:
|
15 |
+
if os.path.exists(instance_data_dir):
|
16 |
+
shutil.rmtree(instance_data_dir)
|
17 |
+
os.makedirs(instance_data_dir, exist_ok=True)
|
18 |
+
|
19 |
+
image1.save(os.path.join(instance_data_dir, "instance_0.png"))
|
20 |
+
if image2 is not None:
|
21 |
+
image2.save(os.path.join(instance_data_dir, "instance_1.png"))
|
22 |
+
|
23 |
+
fine_tune_model(instance_data_dir, instance_prompt, MODEL_NAME, OUTPUT_DIR)
|
24 |
+
return "Model fine-tuning complete."
|
25 |
+
except Exception as e:
|
26 |
+
return str(e)
|
27 |
|
28 |
+
def generate_images(prompt, num_samples, height, width, num_inference_steps, guidance_scale):
|
29 |
+
try:
|
30 |
+
if not os.path.exists(OUTPUT_DIR):
|
31 |
+
return "The model path does not exist."
|
32 |
+
|
33 |
+
pipe = StableDiffusionPipeline.from_pretrained(OUTPUT_DIR, safety_checker=None, torch_dtype=torch.float32).to("cpu")
|
34 |
+
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
35 |
+
|
36 |
+
with torch.autocast("cpu"), torch.inference_mode():
|
37 |
+
images = pipe(
|
38 |
+
prompt, height=height, width=width, num_images_per_prompt=num_samples,
|
39 |
+
num_inference_steps=num_inference_steps, guidance_scale=guidance_scale
|
40 |
+
).images
|
41 |
+
|
42 |
+
return images
|
43 |
+
except Exception as e:
|
44 |
+
return str(e)
|
45 |
|
46 |
+
def gradio_app():
|
47 |
+
with gr.Blocks() as demo:
|
48 |
+
with gr.Tab("Fine-Tune Model"):
|
49 |
+
with gr.Row():
|
50 |
+
with gr.Column():
|
51 |
+
instance_prompt = gr.Textbox(label="Instance Prompt")
|
52 |
+
image1 = gr.Image(label="Upload Image 1", type="pil")
|
53 |
+
image2 = gr.Image(label="Upload Image 2 (Optional)", type="pil")
|
54 |
+
fine_tune_button = gr.Button("Fine-Tune Model")
|
55 |
+
output_text = gr.Textbox(label="Output")
|
56 |
+
fine_tune_button.click(fine_tune, inputs=[instance_prompt, image1, image2], outputs=output_text)
|
57 |
+
|
58 |
+
with gr.Tab("Generate Images"):
|
59 |
+
with gr.Row():
|
60 |
+
with gr.Column():
|
61 |
+
prompt = gr.Textbox(label="Prompt")
|
|
|
|
|
|
|
62 |
num_samples = gr.Number(label="Number of Samples", value=1)
|
63 |
guidance_scale = gr.Number(label="Guidance Scale", value=7.5)
|
|
|
64 |
height = gr.Number(label="Height", value=512)
|
65 |
width = gr.Number(label="Width", value=512)
|
66 |
+
num_inference_steps = gr.Slider(label="Steps", value=50, minimum=1, maximum=100)
|
67 |
+
generate_button = gr.Button("Generate Images")
|
68 |
+
with gr.Column():
|
69 |
+
gallery = gr.Gallery(label="Generated Images")
|
70 |
+
generate_button.click(generate_images, inputs=[prompt, num_samples, height, width, num_inference_steps, guidance_scale], outputs=gallery)
|
71 |
+
|
72 |
+
demo.launch()
|
73 |
|
74 |
+
if __name__ == "__main__":
|
75 |
+
gradio_app()
|