Sirapatrwan commited on
Commit
f11120a
Β·
verified Β·
1 Parent(s): b997e3a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +76 -0
app.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from gradio_imageslider import ImageSlider
3
+ from loadimg import load_img
4
+ import spaces
5
+ from transformers import AutoModelForImageSegmentation
6
+ import torch
7
+ from torchvision import transforms
8
+ from PIL import Image
9
+
10
+ torch.set_float32_matmul_precision(["high", "highest"][0])
11
+
12
+ birefnet = AutoModelForImageSegmentation.from_pretrained(
13
+ "ZhengPeng7/BiRefNet", trust_remote_code=True
14
+ )
15
+ birefnet.to("cpu")
16
+ transform_image = transforms.Compose(
17
+ [
18
+ transforms.Resize((1024, 1024)),
19
+ transforms.ToTensor(),
20
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
21
+ ]
22
+ )
23
+
24
+ def fn(image):
25
+ im = load_img(image, output_type="pil")
26
+ im = im.convert("RGB")
27
+ origin = im.copy()
28
+ image = process(im)
29
+ return image
30
+
31
+ def process(image):
32
+ image_size = image.size
33
+ input_images = transform_image(image).unsqueeze(0).to("cpu")
34
+ # Prediction
35
+ with torch.no_grad():
36
+ preds = birefnet(input_images)[-1].sigmoid().cpu()
37
+ pred = preds[0].squeeze()
38
+ pred_pil = transforms.ToPILImage()(pred)
39
+ mask = pred_pil.resize(image_size)
40
+
41
+ white_background = Image.new("RGBA", image_size, (255, 255, 255, 255))
42
+ image.putalpha(mask)
43
+ combined = Image.alpha_composite(white_background, image)
44
+
45
+ return combined
46
+
47
+ def process_file(f):
48
+ name_path = f.rsplit(".",1)[0]+".jpeg"
49
+ im = load_img(f, output_type="pil")
50
+ im = im.convert("RGB")
51
+ transparent = process(im)
52
+ rgb_image = transparent.convert("RGB") # Ensure the final image is in RGB mode for JPEG
53
+ rgb_image.save(name_path)
54
+ return name_path
55
+
56
+ slider1 = gr.Image()
57
+ slider2 = ImageSlider(label="birefnet", type="pil")
58
+ image = gr.Image(label="Upload an image")
59
+ image2 = gr.Image(label="Upload an image",type="filepath")
60
+ text = gr.Textbox(label="Paste an image URL")
61
+ png_file = gr.File(label="output jpeg file")
62
+
63
+
64
+ chameleon = load_img("butterfly.jpg", output_type="pil")
65
+
66
+ url = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"
67
+
68
+ tab3 = gr.Interface(process_file, inputs=image2, outputs=png_file, examples=["butterfly.jpg"], api_name="png")
69
+
70
+
71
+ demo = gr.TabbedInterface(
72
+ [tab3], ["jpeg"], title="Na Na"
73
+ )
74
+
75
+ if __name__ == "__main__":
76
+ demo.launch(share=True)