Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,33 +3,42 @@ import torch
|
|
3 |
import os
|
4 |
from transformers import BertTokenizer, BertForSequenceClassification, XLNetTokenizer, XLNetForSequenceClassification
|
5 |
|
6 |
-
#
|
7 |
-
logbert_model = BertForSequenceClassification.from_pretrained(
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
logbert_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
10 |
xlnet_tokenizer = XLNetTokenizer.from_pretrained("xlnet-base-cased")
|
11 |
|
12 |
-
#
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
logbert_model.to(device)
|
15 |
xlnet_model.to(device)
|
16 |
|
17 |
-
# ฟังก์ชันการพยากรณ์
|
18 |
def predict_log(text):
|
|
|
19 |
logbert_inputs = logbert_tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
|
20 |
with torch.no_grad():
|
21 |
logbert_outputs = logbert_model(**logbert_inputs)
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
log_levels = ["INFO", "WARN", "ERROR"]
|
26 |
log_level_result = log_levels[log_level]
|
27 |
|
|
|
28 |
xlnet_inputs = xlnet_tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
|
29 |
with torch.no_grad():
|
30 |
xlnet_outputs = xlnet_model(**xlnet_inputs)
|
31 |
-
|
32 |
-
|
|
|
33 |
if performance_value < 0:
|
34 |
performance_status = "Good Performance"
|
35 |
elif performance_value < 3.0:
|
@@ -44,7 +53,6 @@ def predict_log(text):
|
|
44 |
"Performance Status": performance_status
|
45 |
}
|
46 |
|
47 |
-
# ฟังก์ชันสำหรับ Gradio: พยากรณ์จากข้อความโดยตรง
|
48 |
def predict_from_text(text):
|
49 |
prediction = predict_log(text)
|
50 |
return (f"Log Level: {prediction['Log Level']} (Confidence: {prediction['Confidence']})\n"
|
@@ -57,31 +65,36 @@ def predict_from_file(file):
|
|
57 |
for line in f:
|
58 |
prediction = predict_log(line.strip())
|
59 |
result_text = (f"Log: {line.strip()}\n"
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
results.append(result_text)
|
64 |
return "\n\n".join(results)
|
65 |
|
|
|
66 |
custom_css = """
|
67 |
.gr-button {
|
68 |
-
background-color: #FFA500 !important;
|
69 |
color: #FFFFFF !important;
|
70 |
border: none !important;
|
71 |
}
|
72 |
"""
|
73 |
|
74 |
with gr.Blocks(css=custom_css) as demo:
|
|
|
|
|
|
|
75 |
with gr.Tabs():
|
76 |
with gr.TabItem("Upload File"):
|
77 |
file_upload = gr.File(label="Upload Log File")
|
78 |
file_btn = gr.Button("Predict")
|
79 |
-
file_output = gr.Textbox(label="Output")
|
80 |
file_btn.click(predict_from_file, inputs=file_upload, outputs=file_output)
|
|
|
81 |
with gr.TabItem("Text Input"):
|
82 |
-
text_input = gr.Textbox(label="Enter Log Message")
|
83 |
text_btn = gr.Button("Predict")
|
84 |
-
text_output = gr.Textbox(label="Output")
|
85 |
text_btn.click(predict_from_text, inputs=text_input, outputs=text_output)
|
86 |
|
87 |
demo.css += """
|
@@ -90,4 +103,5 @@ with gr.Blocks(css=custom_css) as demo:
|
|
90 |
}
|
91 |
"""
|
92 |
|
93 |
-
|
|
|
|
3 |
import os
|
4 |
from transformers import BertTokenizer, BertForSequenceClassification, XLNetTokenizer, XLNetForSequenceClassification
|
5 |
|
6 |
+
# Load models
|
7 |
+
logbert_model = BertForSequenceClassification.from_pretrained(
|
8 |
+
"Sirapatsorn/Spark_Log_Analysis-logbert", # แก้เป็น path ที่ถูกต้อง
|
9 |
+
token=os.getenv("HUGGINGFACE_TOKEN")
|
10 |
+
)
|
11 |
+
xlnet_model = XLNetForSequenceClassification.from_pretrained(
|
12 |
+
"Sirapatsorn/Spark_Log_Analysis-xlnet", # แก้เป็น path ที่ถูกต้อง
|
13 |
+
token=os.getenv("HUGGINGFACE_TOKEN")
|
14 |
+
)
|
15 |
+
|
16 |
+
# Load tokenizers
|
17 |
logbert_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
18 |
xlnet_tokenizer = XLNetTokenizer.from_pretrained("xlnet-base-cased")
|
19 |
|
20 |
+
# Check for GPU
|
21 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
logbert_model.to(device)
|
23 |
xlnet_model.to(device)
|
24 |
|
|
|
25 |
def predict_log(text):
|
26 |
+
# LogBERT prediction
|
27 |
logbert_inputs = logbert_tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
|
28 |
with torch.no_grad():
|
29 |
logbert_outputs = logbert_model(**logbert_inputs)
|
30 |
+
log_level = torch.argmax(logbert_outputs.logits, dim=1).item()
|
31 |
+
log_level_confidence = torch.softmax(logbert_outputs.logits, dim=1)[0][log_level].item()
|
|
|
32 |
log_levels = ["INFO", "WARN", "ERROR"]
|
33 |
log_level_result = log_levels[log_level]
|
34 |
|
35 |
+
# XLNet prediction
|
36 |
xlnet_inputs = xlnet_tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
|
37 |
with torch.no_grad():
|
38 |
xlnet_outputs = xlnet_model(**xlnet_inputs)
|
39 |
+
performance_value = xlnet_outputs.logits.item()
|
40 |
+
|
41 |
+
# Determine performance status
|
42 |
if performance_value < 0:
|
43 |
performance_status = "Good Performance"
|
44 |
elif performance_value < 3.0:
|
|
|
53 |
"Performance Status": performance_status
|
54 |
}
|
55 |
|
|
|
56 |
def predict_from_text(text):
|
57 |
prediction = predict_log(text)
|
58 |
return (f"Log Level: {prediction['Log Level']} (Confidence: {prediction['Confidence']})\n"
|
|
|
65 |
for line in f:
|
66 |
prediction = predict_log(line.strip())
|
67 |
result_text = (f"Log: {line.strip()}\n"
|
68 |
+
f"Log Level: {prediction['Log Level']} (Confidence: {prediction['Confidence']})\n"
|
69 |
+
f"Performance Value: {prediction['Performance Value']}\n"
|
70 |
+
f"Performance Status: {prediction['Performance Status']}")
|
71 |
results.append(result_text)
|
72 |
return "\n\n".join(results)
|
73 |
|
74 |
+
# Create Gradio interface
|
75 |
custom_css = """
|
76 |
.gr-button {
|
77 |
+
background-color: #FFA500 !important;
|
78 |
color: #FFFFFF !important;
|
79 |
border: none !important;
|
80 |
}
|
81 |
"""
|
82 |
|
83 |
with gr.Blocks(css=custom_css) as demo:
|
84 |
+
gr.Markdown("# Spark Log Analysis")
|
85 |
+
gr.Markdown("Analyze your log messages for log level and performance prediction")
|
86 |
+
|
87 |
with gr.Tabs():
|
88 |
with gr.TabItem("Upload File"):
|
89 |
file_upload = gr.File(label="Upload Log File")
|
90 |
file_btn = gr.Button("Predict")
|
91 |
+
file_output = gr.Textbox(label="Output", lines=10)
|
92 |
file_btn.click(predict_from_file, inputs=file_upload, outputs=file_output)
|
93 |
+
|
94 |
with gr.TabItem("Text Input"):
|
95 |
+
text_input = gr.Textbox(label="Enter Log Message", lines=3)
|
96 |
text_btn = gr.Button("Predict")
|
97 |
+
text_output = gr.Textbox(label="Output", lines=5)
|
98 |
text_btn.click(predict_from_text, inputs=text_input, outputs=text_output)
|
99 |
|
100 |
demo.css += """
|
|
|
103 |
}
|
104 |
"""
|
105 |
|
106 |
+
# Launch the app
|
107 |
+
demo.launch()
|