import os import subprocess import sys import importlib def check_and_install_package(package_name): try: importlib.import_module(package_name) print(f"{package_name} is already installed") except ImportError: print(f"Installing {package_name}...") subprocess.check_call([sys.executable, '-m', 'pip', 'install', package_name]) def install_requirements(): try: # Upgrade pip first subprocess.check_call([sys.executable, '-m', 'pip', 'install', '--upgrade', 'pip']) # Install requirements from file requirements_path = os.path.join(os.path.dirname(__file__), 'requirement.txt') if os.path.exists(requirements_path): print("Installing requirements from requirements.txt...") subprocess.check_call([sys.executable, '-m', 'pip', 'install', '-r', requirements_path]) print("Successfully installed requirements") else: print(f"requirements.txt not found at {requirements_path}") # Explicitly check and install critical packages critical_packages = ['sentencepiece', 'transformers', 'torch', 'gradio'] for package in critical_packages: check_and_install_package(package) except subprocess.CalledProcessError as e: print(f"Error installing requirements: {e}") raise except Exception as e: print(f"Unexpected error during installation: {e}") raise # Install requirements first print("Starting installation of requirements...") install_requirements() print("Finished installing requirements") import gradio as gr import torch import os from transformers import BertTokenizer, BertForSequenceClassification, XLNetTokenizer, XLNetForSequenceClassification # Load models logbert_model = BertForSequenceClassification.from_pretrained( "Sirapatsorn/Spark_Log_Analysis-logbert", # แก้เป็น path ที่ถูกต้อง token=os.getenv("HUGGINGFACE_TOKEN") ) xlnet_model = XLNetForSequenceClassification.from_pretrained( "Sirapatsorn/Spark_Log_Analysis-xlnet", # แก้เป็น path ที่ถูกต้อง token=os.getenv("HUGGINGFACE_TOKEN") ) # Load tokenizers logbert_tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") xlnet_tokenizer = XLNetTokenizer.from_pretrained("xlnet-base-cased") # Check for GPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") logbert_model.to(device) xlnet_model.to(device) def predict_log(text): # LogBERT prediction logbert_inputs = logbert_tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device) with torch.no_grad(): logbert_outputs = logbert_model(**logbert_inputs) log_level = torch.argmax(logbert_outputs.logits, dim=1).item() log_level_confidence = torch.softmax(logbert_outputs.logits, dim=1)[0][log_level].item() log_levels = ["INFO", "WARN", "ERROR"] log_level_result = log_levels[log_level] # XLNet prediction xlnet_inputs = xlnet_tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device) with torch.no_grad(): xlnet_outputs = xlnet_model(**xlnet_inputs) performance_value = xlnet_outputs.logits.item() # Determine performance status if performance_value < 0: performance_status = "Good Performance" elif performance_value < 3.0: performance_status = "Normal Performance" else: performance_status = "Poor Performance" return { "Log Level": log_level_result, "Confidence": f"{log_level_confidence:.2f}", "Performance Value": f"{performance_value:.2f}", "Performance Status": performance_status } def predict_from_text(text): prediction = predict_log(text) return (f"Log Level: {prediction['Log Level']} (Confidence: {prediction['Confidence']})\n" f"Performance Value: {prediction['Performance Value']}\n" f"Performance Status: {prediction['Performance Status']}") def predict_from_file(file): results = [] with open(file.name, 'r') as f: for line in f: prediction = predict_log(line.strip()) result_text = (f"Log: {line.strip()}\n" f"Log Level: {prediction['Log Level']} (Confidence: {prediction['Confidence']})\n" f"Performance Value: {prediction['Performance Value']}\n" f"Performance Status: {prediction['Performance Status']}") results.append(result_text) return "\n\n".join(results) # Create Gradio interface custom_css = """ .gr-button { background-color: #FFA500 !important; color: #FFFFFF !important; border: none !important; } """ with gr.Blocks(css=custom_css) as demo: gr.Markdown("# Spark Log Analysis") gr.Markdown("Analyze your log messages for log level and performance prediction") with gr.Tabs(): with gr.TabItem("Upload File"): file_upload = gr.File(label="Upload Log File") file_btn = gr.Button("Predict") file_output = gr.Textbox(label="Output", lines=10) file_btn.click(predict_from_file, inputs=file_upload, outputs=file_output) with gr.TabItem("Text Input"): text_input = gr.Textbox(label="Enter Log Message", lines=3) text_btn = gr.Button("Predict") text_output = gr.Textbox(label="Output", lines=5) text_btn.click(predict_from_text, inputs=text_input, outputs=text_output) demo.css += """ .gr-button.gr-button-lg.gr-button-secondary { display: none !important; } """ # Launch the app demo.launch()