import gradio as gr from transformers import pipeline # Load the GPT model gpt_model = pipeline('text-generation', model='distilgpt2') # Function to generate workout plan def generate_workout_plan(goal, days): prompt = f"Generate a {days}-day workout plan for {goal}." generated_text = gpt_model(prompt, max_length=150, num_return_sequences=1)[0]['generated_text'] return generated_text.strip() # Gradio Interface def workout_interface(goal, days): workout_plan = generate_workout_plan(goal, days) return workout_plan # Create the Gradio interface interface = gr.Interface( fn=workout_interface, inputs=[ gr.Textbox(label="Goal (e.g., weight loss, muscle gain)", placeholder="Enter your goal"), gr.Slider(minimum=1, maximum=30, value=1, label="Number of days") ], outputs="text", title="AI-Generated Workout Plan", description="Enter your fitness goal and number of days to generate a personalized workout plan." ) # Launch the app if __name__ == "__main__": interface.launch()