Spaces:
Running
Running
# Modified by Jialian Wu from | |
# https://github.com/microsoft/GenerativeImage2Text/blob/main/generativeimage2text/layers/decoder.py | |
# and https://github.com/kdexd/virtex | |
from torch import nn | |
import torch | |
import functools | |
from torch.nn import functional as F | |
import warnings | |
class TextualHead(nn.Module): | |
def __init__(self, | |
visual_feature_size: int, vocab_size: int, hidden_size: int): | |
super().__init__() | |
self.visual_feature_size = visual_feature_size | |
self.vocab_size = vocab_size | |
self.hidden_size = hidden_size | |
def textual_feature_size(self): | |
return self.hidden_size | |
class WordAndPositionalEmbedding(nn.Module): | |
def __init__( | |
self, | |
vocab_size: int, | |
hidden_size: int, | |
dropout: float = 0.0, | |
max_caption_length: int = 30, | |
padding_idx: int = 0, | |
): | |
super().__init__() | |
self.vocab_size = vocab_size | |
self.padding_idx = padding_idx | |
#self.words = nn.Embedding(vocab_size, hidden_size, padding_idx=padding_idx) | |
self.words = nn.Embedding(vocab_size, hidden_size) | |
# We provide no "padding index" for positional embeddings. We zero out | |
# the positional embeddings of padded positions as a post-processing. | |
self.positions = nn.Embedding(max_caption_length, hidden_size) | |
self.layer_norm = nn.LayerNorm( | |
hidden_size, eps=1e-8, elementwise_affine=True | |
) | |
self.dropout = nn.Dropout(p=dropout) | |
def forward(self, tokens: torch.Tensor): | |
position_indices = self._create_position_indices(tokens) | |
# shape: (batch_size, max_caption_length, hidden_size) | |
word_embeddings = self.words(tokens) | |
position_embeddings = self.positions(position_indices) | |
# shape: (batch_size, max_caption_length, hidden_size) | |
embeddings = self.layer_norm(word_embeddings + position_embeddings) | |
embeddings = self.dropout(embeddings) | |
return embeddings | |
def _create_position_indices(self, tokens: torch.Tensor): | |
# Create position indices of the same size as token indices. | |
batch_size, max_caption_length = tokens.size() | |
positions = torch.arange( | |
max_caption_length, dtype=tokens.dtype, device=tokens.device | |
) | |
# shape: (batch_size, max_caption_length) | |
positions = positions.unsqueeze(0).expand(batch_size, max_caption_length) | |
return positions | |
class BertEncoderAsDecoder(nn.Module): | |
def __init__(self, encoder): | |
super().__init__() | |
self.encoder = encoder | |
def forward(self, tgt, memory, | |
tgt_mask=None, | |
tgt_key_padding_mask=None, | |
memory_key_padding_mask=None, | |
tgt_bi_valid_mask=None, | |
encoder_history_states=None, | |
): | |
assert tgt_key_padding_mask is None, 'not supported' | |
assert tgt_mask.dim() == 2 | |
assert tgt_mask.shape[0] == tgt_mask.shape[1] | |
# tgt_mask should always be 0/negative infinity | |
tgt = tgt.transpose(0, 1) | |
memory = memory.transpose(0, 1) | |
hidden_states = torch.cat((memory, tgt), dim=1) | |
num_tgt = tgt.shape[1] | |
num_memory = memory.shape[1] | |
device = tgt.device | |
dtype = tgt.dtype | |
top_left = torch.zeros((num_memory, num_memory), device=device, dtype=dtype) | |
top_right = torch.full((num_memory, num_tgt), float('-inf'), device=tgt.device, dtype=dtype,) | |
bottom_left = torch.zeros((num_tgt, num_memory), dtype=dtype, device=tgt_mask.device,) | |
left = torch.cat((top_left, bottom_left), dim=0) | |
right = torch.cat((top_right, tgt_mask.to(dtype)), dim=0) | |
full_attention_mask = torch.cat((left, right), dim=1)[None, :] | |
if memory_key_padding_mask is None: | |
memory_key_padding_mask = torch.full((memory.shape[0], memory.shape[1]), fill_value=False, device=device) | |
# if it is False, it means valid. That is, it is not a padding | |
assert memory_key_padding_mask.dtype == torch.bool | |
zero_negative_infinity = torch.zeros_like(memory_key_padding_mask, dtype=tgt.dtype) | |
zero_negative_infinity[memory_key_padding_mask] = float('-inf') | |
full_attention_mask = full_attention_mask.expand((memory_key_padding_mask.shape[0], num_memory + num_tgt, num_memory + num_tgt)) | |
full_attention_mask = full_attention_mask.clone() | |
origin_left = full_attention_mask[:, :, :num_memory] | |
update = zero_negative_infinity[:, None, :] | |
full_attention_mask[:, :, :num_memory] = origin_left + update | |
if tgt_bi_valid_mask is not None: | |
# verify the correctness | |
bs = full_attention_mask.shape[0] | |
# during inference, tgt_bi_valid_mask's length is not changed, but | |
# num_tgt can be increased | |
max_valid_target = tgt_bi_valid_mask.shape[1] | |
mask = tgt_bi_valid_mask[:, None, :].expand((bs, num_memory+num_tgt, max_valid_target)) | |
full_attention_mask[:, :, num_memory:(num_memory+max_valid_target)][mask] = 0 | |
# add axis for multi-head | |
full_attention_mask = full_attention_mask[:, None, :, :] | |
if encoder_history_states is None: | |
result = self.encoder( | |
hidden_states=hidden_states, | |
attention_mask=full_attention_mask, | |
encoder_history_states=encoder_history_states, | |
) | |
result = list(result) | |
result[0] = result[0][:, num_memory:].transpose(0, 1) | |
if self.encoder.output_hidden_states: | |
return result[0], result[1] | |
else: | |
# make it back-compatible | |
return result[0] | |
else: | |
encoder_out = self.encoder( | |
hidden_states=hidden_states[:, -1:], | |
attention_mask=full_attention_mask[:, :, -1:], | |
encoder_history_states=encoder_history_states, | |
) | |
result = encoder_out[0].transpose(0, 1) | |
if self.encoder.output_hidden_states: | |
return result, encoder_out[1] | |
else: | |
return result | |
def create_transformer(decoder_type, norm_type, | |
textual_feature_size, | |
attention_heads, | |
feedforward_size, | |
dropout, | |
num_layers, | |
output_hidden_states=False, | |
use_mlp_wrapper=None, | |
use_act_checkpoint=True, | |
): | |
assert norm_type in ['post', 'pre'] | |
if decoder_type is None: | |
LayerClass = ( | |
nn.TransformerDecoderLayer | |
if norm_type == "post" | |
else PreNormTransformerDecoderLayer | |
) | |
_layer = LayerClass( | |
textual_feature_size, | |
attention_heads, | |
dim_feedforward=feedforward_size, | |
dropout=dropout, | |
activation="gelu", | |
) | |
return nn.TransformerDecoder(_layer, num_layers) | |
elif decoder_type == 'bert_en': | |
from .modeling_bert import BertConfig, BertEncoder | |
config = BertConfig( | |
vocab_size_or_config_json_file=30522, | |
hidden_size=textual_feature_size, | |
num_hidden_layers=num_layers, | |
num_attention_heads=attention_heads, | |
intermediate_size=feedforward_size, | |
hidden_act="gelu", | |
hidden_dropout_prob=0.1, | |
attention_probs_dropout_prob=0.1, | |
layer_norm_eps=1e-12, | |
) | |
config.pre_norm = (norm_type == 'pre') | |
config.use_mlp_wrapper = use_mlp_wrapper | |
config.output_hidden_states = output_hidden_states | |
encoder = BertEncoder(config, use_act_checkpoint=use_act_checkpoint) | |
return BertEncoderAsDecoder(encoder) | |
class PreNormTransformerDecoderLayer(nn.TransformerDecoderLayer): | |
def forward(self, tgt, memory, tgt_mask=None, memory_mask=None, | |
tgt_key_padding_mask=None, memory_key_padding_mask=None): | |
# fmt: off | |
# We use the members (modules) from super-class, just the order of | |
# operations is changed here. First layernorm, then attention. | |
tgt2 = self.norm1(tgt) | |
tgt2, _ = self.self_attn( | |
tgt2, tgt2, tgt2, attn_mask=tgt_mask, | |
key_padding_mask=tgt_key_padding_mask | |
) | |
tgt = tgt + self.dropout1(tgt2) | |
# Layernorm first, then decoder attention. | |
tgt2 = self.norm2(tgt) | |
tgt2, _ = self.multihead_attn( | |
tgt2, memory, memory, attn_mask=memory_mask, | |
key_padding_mask=memory_key_padding_mask | |
) | |
tgt = tgt + self.dropout2(tgt2) | |
# Layernorm first, then transformation through feedforward network. | |
tgt2 = self.norm3(tgt) | |
tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt2)))) | |
tgt = tgt + self.dropout3(tgt2) | |
return tgt | |
class TransformerDecoderTextualHead(TextualHead): | |
def __init__( | |
self, | |
object_feature_size: int, | |
vocab_size: int, | |
hidden_size: int, | |
num_layers: int, | |
attention_heads: int, | |
feedforward_size: int, | |
dropout: float = 0.1, | |
norm_type: str = "post", | |
mask_future_positions: bool = True, | |
max_caption_length: int = 1024, | |
padding_idx: int = 0, | |
decoder_type=None, | |
not_tie_weight=None, | |
output_hidden_states=None, | |
use_mlp_wrapper=None, | |
use_act_checkpoint=True, | |
): | |
super().__init__(object_feature_size, vocab_size, hidden_size) | |
self.num_layers = num_layers | |
self.attention_heads = attention_heads | |
self.feedforward_size = feedforward_size | |
self.dropout = dropout | |
assert mask_future_positions | |
self.padding_idx = padding_idx | |
self.object_feature_projection = nn.Sequential( | |
nn.Linear(object_feature_size, self.textual_feature_size), | |
nn.LayerNorm(self.textual_feature_size)) | |
self.embedding = WordAndPositionalEmbedding( | |
self.vocab_size, | |
self.textual_feature_size, | |
dropout=dropout, | |
max_caption_length=max_caption_length, | |
padding_idx=padding_idx, | |
) | |
self.transformer = create_transformer( | |
decoder_type=decoder_type, | |
norm_type=norm_type, | |
textual_feature_size=self.textual_feature_size, | |
attention_heads=self.attention_heads, | |
feedforward_size=self.feedforward_size, | |
dropout=dropout, | |
num_layers=self.num_layers, | |
output_hidden_states=output_hidden_states, | |
use_mlp_wrapper=use_mlp_wrapper, | |
use_act_checkpoint=use_act_checkpoint, | |
) | |
self.apply(self._init_weights) | |
# Create an output linear layer and tie the input and output word | |
# embeddings to reduce parametejs. | |
self.output = nn.Linear(self.textual_feature_size, vocab_size) | |
if not not_tie_weight: | |
self.output.weight = self.embedding.words.weight | |
def _init_weights(module): | |
"""Initialize weights like BERT - N(0.0, 0.02), bias = 0.""" | |
if isinstance(module, nn.Linear): | |
module.weight.data.normal_(mean=0.0, std=0.02) | |
elif isinstance(module, nn.MultiheadAttention): | |
module.in_proj_weight.data.normal_(mean=0.0, std=0.02) | |
module.out_proj.weight.data.normal_(mean=0.0, std=0.02) | |
elif isinstance(module, nn.Embedding): | |
module.weight.data.normal_(mean=0.0, std=0.02) | |
if module.padding_idx is not None: | |
module.weight.data[module.padding_idx].zero_() | |
def forward( | |
self, | |
hidden_states, | |
text_tokens, | |
): | |
projected_object_features = self.object_feature_projection(hidden_states) if hidden_states is not None else None | |
batch_size, max_text_length = text_tokens.size() | |
text_embeddings = self.embedding(text_tokens) | |
# An additive mask for masking the future (one direction). | |
uni_mask_zero_neg = self._generate_future_mask( | |
max_text_length, text_embeddings.dtype, text_embeddings.device | |
) | |
# We transpose the first two dimensions of tokens embeddings and visual | |
# features, as required by decoder. | |
text_embeddings = text_embeddings.transpose(0, 1) | |
projected_object_features = projected_object_features.transpose(0, 1) | |
# if transformer here is the pytorch/decoder, there is no chance, the | |
# output is always tensor | |
trans_out = self.transformer( | |
text_embeddings, | |
projected_object_features, | |
tgt_mask=uni_mask_zero_neg, | |
) | |
if isinstance(trans_out, tuple): | |
textual_features = trans_out[0] | |
else: | |
assert isinstance(trans_out, torch.Tensor) | |
textual_features = trans_out | |
# Undo the transpose and bring batch to dim 0. | |
# shape: (batch_size, max_caption_length, hidden_size) | |
textual_features = textual_features.transpose(0, 1) | |
# shape: (batch_size, max_caption_length, vocab_size) | |
output_logits = self.output(textual_features) | |
if isinstance(trans_out, tuple): | |
return output_logits, trans_out[1] | |
else: | |
return output_logits | |
def _generate_future_mask( | |
self, size: int, dtype: torch.dtype, device: torch.device | |
): | |
# Default mask is for forward direction. Flip for backward direction. | |
mask = torch.triu( | |
torch.ones(size, size, device=device, dtype=dtype), diagonal=1 | |
) | |
mask = mask.masked_fill(mask == 1, float("-inf")) | |
return mask | |
class AutoRegressiveBeamSearch(object): | |
def __init__( | |
self, | |
end_token_id: int, | |
max_steps: int = 50, | |
beam_size: int = 5, | |
objectdet=True, | |
per_node_beam_size: int = 2, | |
): | |
self._eos_index = end_token_id | |
self.max_steps = max_steps | |
self.beam_size = beam_size | |
self.objectdet = objectdet | |
self.per_node_beam_size = per_node_beam_size or beam_size | |
def search(self, begin_tokens, step): | |
if self.beam_size > 1 and self.objectdet: | |
only_return_best = False | |
else: | |
only_return_best = True | |
batch_size = begin_tokens.size()[0] | |
predictions = begin_tokens.unsqueeze(1).expand((batch_size, self.beam_size, begin_tokens.shape[-1])) | |
# Calculate the first timestep. This is done outside the main loop | |
# because we are going from a single decoder input (the output from the | |
# encoder) to the top `beam_size` decoder outputs. On the other hand, | |
# within the main loop we are going from the `beam_size` elements of the | |
# beam to `beam_size`^2 candidates from which we will select the top | |
# `beam_size` elements for the next iteration. | |
# shape: (batch_size, num_classes) | |
start_class_logits = step(begin_tokens) | |
# Convert logits to logprobs. | |
# shape: (batch_size * beam_size, vocab_size) | |
start_class_logprobs = F.log_softmax(start_class_logits, dim=1) | |
num_classes = start_class_logprobs.size()[1] | |
# shape: (batch_size, beam_size), (batch_size, beam_size) | |
start_top_logprobs, start_predicted_classes = start_class_logprobs.topk( | |
self.beam_size | |
) | |
if ( | |
self.beam_size == 1 | |
and (start_predicted_classes == self._eos_index).all() | |
): | |
warnings.warn( | |
"Empty object description predicted. You may want to increase beam" | |
"size or ensure your step function is working properly.", | |
RuntimeWarning, | |
) | |
if only_return_best: | |
return start_predicted_classes, start_top_logprobs | |
else: | |
return start_predicted_classes.unsqueeze(-1), start_top_logprobs | |
# The log probs for the last time step. | |
# shape: (batch_size, beam_size) | |
last_logprobs = start_top_logprobs | |
# shape: (batch_size, beam_size, sequence_length) | |
predictions = torch.cat([predictions, start_predicted_classes.unsqueeze(-1)], dim=-1) | |
# Log probability tensor that mandates that the end token is selected. | |
# shape: (batch_size * beam_size, num_classes) | |
logprobs_after_end = start_class_logprobs.new_full( | |
(batch_size * self.beam_size, num_classes), float("-inf") | |
) | |
logprobs_after_end[:, self._eos_index] = 0.0 | |
logits_after_end = start_class_logprobs.new_full( | |
(batch_size * self.beam_size, num_classes), float("-inf") | |
) | |
logits_after_end[:, self._eos_index] = 0 | |
while predictions.shape[-1] < self.max_steps: | |
# shape: (batch_size * beam_size,) | |
last_predictions = predictions[:, :, -1].reshape(batch_size * self.beam_size) | |
# If every predicted token from the last step is `self._eos_index`, | |
# then we can stop early. | |
if (last_predictions == self._eos_index).all(): | |
break | |
predictions_so_far = predictions.view( | |
batch_size * self.beam_size, -1 | |
) | |
# shape: (batch_size * beam_size, num_classes) | |
class_logits = step(predictions_so_far) | |
# Set logprobs of last predicted tokens as high negative value to avoid | |
# repetition in description. | |
class_logits = class_logits.scatter(1, predictions_so_far[:, -1].view((-1, 1)), -10000) | |
# shape: (batch_size * beam_size, num_classes) | |
last_predictions_expanded = last_predictions.unsqueeze(-1).expand( | |
batch_size * self.beam_size, num_classes | |
) | |
# Here we are finding any beams where we predicted the end token in | |
# the previous timestep and replacing the distribution with a | |
# one-hot distribution, forcing the beam to predict the end token | |
# this timestep as well. | |
class_logits = torch.where( | |
last_predictions_expanded == self._eos_index, | |
logits_after_end, | |
class_logits, | |
) | |
# Convert logits to logprobs. | |
# shape: (batch_size * beam_size, vocab_size) | |
class_logprobs = F.log_softmax(class_logits, dim=1) | |
# shape (both): (batch_size * beam_size, per_node_beam_size) | |
top_logprobs, predicted_classes = class_logprobs.topk( | |
self.per_node_beam_size | |
) | |
# Here we expand the last log probs to `(batch_size * beam_size, | |
# per_node_beam_size)` so that we can add them to the current log | |
# probs for this timestep. This lets us maintain the log | |
# probability of each element on the beam. | |
# shape: (batch_size * beam_size, per_node_beam_size) | |
expanded_last_logprobs = ( | |
last_logprobs.unsqueeze(2) | |
.expand(batch_size, self.beam_size, self.per_node_beam_size) | |
.reshape(batch_size * self.beam_size, self.per_node_beam_size) | |
) | |
# shape: (batch_size * beam_size, per_node_beam_size) | |
summed_top_logprobs = top_logprobs + expanded_last_logprobs | |
# shape: (batch_size, beam_size * per_node_beam_size) | |
reshaped_summed = summed_top_logprobs.reshape( | |
batch_size, self.beam_size * self.per_node_beam_size | |
) | |
# shape: (batch_size, beam_size * per_node_beam_size) | |
reshaped_predicted_classes = predicted_classes.reshape( | |
batch_size, self.beam_size * self.per_node_beam_size | |
) | |
# Append the predictions to the current beam. | |
reshaped_beam = ( | |
predictions.view(batch_size * self.beam_size, 1, -1) | |
.repeat(1, self.per_node_beam_size, 1) | |
.reshape(batch_size, self.beam_size * self.per_node_beam_size, -1) | |
) | |
# batch_size, (beam_size * per_node_beach_size), #token | |
reshaped_beam = torch.cat([reshaped_beam, reshaped_predicted_classes.unsqueeze(-1)], dim=-1) | |
# Keep only the top `beam_size` beam indices. | |
# shape: (batch_size, beam_size), (batch_size, beam_size) | |
restricted_beam_logprobs, restricted_beam_indices = reshaped_summed.topk( | |
self.beam_size | |
) | |
predictions = reshaped_beam.gather( | |
1, restricted_beam_indices.unsqueeze(-1).repeat(1,1,reshaped_beam.shape[-1]) | |
) | |
# shape: (batch_size, beam_size) | |
last_logprobs = restricted_beam_logprobs | |
if not torch.isfinite(last_logprobs).all(): | |
warnings.warn( | |
"Infinite log probs encountered. Some final descriptions may not " | |
"make sense. This can happen when the beam size is larger than" | |
" the number of valid (non-zero probability) transitions that " | |
"the step function produces.", | |
RuntimeWarning, | |
) | |
# Optionally select best beam and its logprobs. | |
if only_return_best: | |
# shape: (batch_size, sequence_length) | |
predictions = predictions[:, 0, :] | |
last_logprobs = last_logprobs[:, 0] | |
num_valid = (predictions != self._eos_index).sum(dim=-1) | |
num_valid += (predictions == self._eos_index).sum(dim=-1) > 0 | |
num_valid = num_valid - begin_tokens.shape[1] | |
num_valid = num_valid.clip(min=1) | |
last_logprobs = last_logprobs / num_valid | |
return predictions, last_logprobs | |
class GRiTTextDecoder(nn.Module): | |
def __init__( | |
self, | |
transformer, | |
begin_token_id=101, | |
beamsearch_decode=None, | |
loss_type=None, | |
tokenizer=None, | |
): | |
super().__init__() | |
self.textual = transformer | |
self.padding_idx = self.textual.padding_idx | |
self.begin_token_id = begin_token_id | |
self.beamsearch_decode = beamsearch_decode | |
self.tokenizer = tokenizer | |
if loss_type is None: | |
self.loss = nn.CrossEntropyLoss(ignore_index=self.padding_idx) | |
elif loss_type == 'smooth': | |
self.loss = SmoothLabelCrossEntropyLoss(ignore_index=self.padding_idx) | |
else: | |
raise NotImplementedError(loss_type) | |
def forward(self, batch): | |
object_features = batch['object_features'] | |
if self.training: | |
caption_token_input = batch["text_tokens"] | |
output_logits = self.textual( | |
object_features, | |
caption_token_input, | |
) | |
if 'need_predict' in batch: | |
# in place should also be good, but we do not choose that for | |
# safety as we may use it in prediction results in future | |
target = batch["text_tokens"].clone() | |
target[batch['need_predict'] == 0] = self.padding_idx | |
else: | |
target = batch["text_tokens"] | |
feat = output_logits[:, :-1].contiguous() | |
target = target[:, 1:].contiguous() | |
feat = feat.view(-1, self.textual.vocab_size) | |
target = target.view(-1) | |
valid_mask = target != self.padding_idx | |
target = target[valid_mask] | |
feat = feat[valid_mask] | |
loss = self.loss(feat, target) | |
return loss | |
else: | |
output_dict = self.infer(object_features) | |
return output_dict | |
def infer(self, object_features): | |
batch_size = object_features.size(0) | |
begin_tokens = object_features.new_full( | |
(batch_size, 1), self.begin_token_id | |
).long() | |
decoding_step = functools.partial( | |
self.decoding_step, object_features | |
) | |
object_description_tokens, logprobs = self.beamsearch_decode.search( | |
begin_tokens, decoding_step | |
) | |
output_dict = { | |
'predictions': object_description_tokens, | |
'logprobs': logprobs, | |
} | |
return output_dict | |
def decoding_step(self, object_features, partial_text): | |
batch_size = object_features.shape[0] | |
beam_size = int(partial_text.size(0) / batch_size) | |
if beam_size > 1: | |
batch_size, num_token, channels = object_features.size() | |
object_features = object_features.unsqueeze(1).repeat(1, beam_size, 1, 1) | |
object_features = object_features.view( | |
batch_size * beam_size, num_token, channels | |
) | |
text_lengths = torch.ones_like(partial_text) | |
if len(text_lengths.size()) != 2: | |
partial_text = partial_text.unsqueeze(1) | |
# shape: (batch_size * beam_size, partial_caption_length, vocab_size) | |
logits = self.textual( | |
object_features, | |
partial_text, | |
) | |
return logits[:, -1, :].float() | |
class SmoothLabelCrossEntropyLoss(nn.Module): | |
def __init__(self, eps=0.1, log_prefix='', ignore_index=None): | |
super().__init__() | |
self.eps = eps | |
self.log_soft = nn.LogSoftmax(dim=1) | |
self.kl = nn.KLDivLoss(reduction='none') | |
self.iter = 0 | |
self.max_loss = 0 | |
self.min_loss = 0 | |
self.log_prefix = log_prefix | |
self.ignore_index = ignore_index | |
def forward(self, feature, target): | |
feature = feature.float() | |
if self.ignore_index is not None: | |
valid_mask = target != self.ignore_index | |
target = target[valid_mask] | |
feature = feature[valid_mask] | |
assert target.numel() > 0 | |
self.iter += 1 | |
eps = self.eps | |
n_class = feature.size(1) | |
one_hot = torch.zeros_like(feature).scatter(1, target.view(-1, 1), 1) | |
one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1) | |
log_prb = self.log_soft(feature) | |
loss = self.kl(log_prb, one_hot) | |
return loss.sum(dim=1).mean() | |