Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from model import SimpleMultilingualClassifier # Import your model
|
4 |
+
|
5 |
+
# --- Configuration ---
|
6 |
+
embedding_files = {
|
7 |
+
'en': 'fasttext_embeddings/cc.en.100.bin',
|
8 |
+
'fr': 'fasttext_embeddings/cc.fr.100.bin'
|
9 |
+
# Add more languages as needed
|
10 |
+
}
|
11 |
+
num_classes = 3 # Replace with the actual number of classes
|
12 |
+
class_labels = ["positive", "negative", "neutral"] # Replace with your actual class labels
|
13 |
+
|
14 |
+
# Load the model
|
15 |
+
try:
|
16 |
+
model = SimpleMultilingualClassifier(embedding_files, num_classes)
|
17 |
+
# In a real scenario, you would load trained weights here:
|
18 |
+
# model.load_state_dict(torch.load('path/to/your/trained_weights.pth'))
|
19 |
+
model.eval()
|
20 |
+
except Exception as e:
|
21 |
+
print(f"Error loading model: {e}")
|
22 |
+
model = None
|
23 |
+
|
24 |
+
def classify_text(text, language):
|
25 |
+
if model:
|
26 |
+
try:
|
27 |
+
prediction = model.predict(text, language, class_labels)
|
28 |
+
return prediction
|
29 |
+
except ValueError as e:
|
30 |
+
return str(e)
|
31 |
+
else:
|
32 |
+
return "Model not loaded."
|
33 |
+
|
34 |
+
iface = gr.Interface(
|
35 |
+
fn=classify_text,
|
36 |
+
inputs=[
|
37 |
+
gr.Textbox(label="Enter text"),
|
38 |
+
gr.Dropdown(choices=list(embedding_files.keys()), label="Language")
|
39 |
+
],
|
40 |
+
outputs=gr.Textbox(label="Prediction"),
|
41 |
+
title="Simple Multilingual Text Classifier",
|
42 |
+
description="A basic multilingual text classifier using FastText embeddings.",
|
43 |
+
)
|
44 |
+
|
45 |
+
iface.launch()
|