File size: 1,909 Bytes
7f43945
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
import torch.nn as nn
from torch.nn.functional import mse_loss


class GANLoss(nn.Module):
    def __init__(self, use_lsgan=True, target_real_label=1.0, target_fake_label=0.0,
                     tensor=torch.FloatTensor):
        super(GANLoss, self).__init__()
        self.real_label = target_real_label
        self.fake_label = target_fake_label
        self.real_label_var = None
        self.fake_label_var = None
        self.Tensor = tensor
        if use_lsgan:
            self.loss = nn.MSELoss()
        else:
            self.loss = nn.BCELoss()

    def get_target_tensor(self, input, target_is_real):
        target_tensor = None
        if target_is_real:
            create_label = ((self.real_label_var is None) or(self.real_label_var.numel() != input.numel()))
            # pdb.set_trace()
            if create_label:
                real_tensor = self.Tensor(input.size()).fill_(self.real_label)
                # self.real_label_var = Variable(real_tensor, requires_grad=False)
                # self.real_label_var = torch.Tensor(real_tensor)
                self.real_label_var = real_tensor
            target_tensor = self.real_label_var
        else:
            # pdb.set_trace()
            create_label = ((self.fake_label_var is None) or (self.fake_label_var.numel() != input.numel()))
            if create_label:
                fake_tensor = self.Tensor(input.size()).fill_(self.fake_label)
                # self.fake_label_var = Variable(fake_tensor, requires_grad=False)
                # self.fake_label_var = torch.Tensor(fake_tensor)
                self.fake_label_var = fake_tensor
            target_tensor = self.fake_label_var
        return target_tensor

    def __call__(self, input, target_is_real):
        target_tensor = self.get_target_tensor(input, target_is_real)
        # pdb.set_trace()
        return self.loss(input, target_tensor)