|
import torch |
|
import torch.nn as nn |
|
from torch.nn.functional import mse_loss |
|
|
|
|
|
class GANLoss(nn.Module): |
|
def __init__(self, use_lsgan=True, target_real_label=1.0, target_fake_label=0.0, |
|
tensor=torch.FloatTensor): |
|
super(GANLoss, self).__init__() |
|
self.real_label = target_real_label |
|
self.fake_label = target_fake_label |
|
self.real_label_var = None |
|
self.fake_label_var = None |
|
self.Tensor = tensor |
|
if use_lsgan: |
|
self.loss = nn.MSELoss() |
|
else: |
|
self.loss = nn.BCELoss() |
|
|
|
def get_target_tensor(self, input, target_is_real): |
|
target_tensor = None |
|
if target_is_real: |
|
create_label = ((self.real_label_var is None) or(self.real_label_var.numel() != input.numel())) |
|
|
|
if create_label: |
|
real_tensor = self.Tensor(input.size()).fill_(self.real_label) |
|
|
|
|
|
self.real_label_var = real_tensor |
|
target_tensor = self.real_label_var |
|
else: |
|
|
|
create_label = ((self.fake_label_var is None) or (self.fake_label_var.numel() != input.numel())) |
|
if create_label: |
|
fake_tensor = self.Tensor(input.size()).fill_(self.fake_label) |
|
|
|
|
|
self.fake_label_var = fake_tensor |
|
target_tensor = self.fake_label_var |
|
return target_tensor |
|
|
|
def __call__(self, input, target_is_real): |
|
target_tensor = self.get_target_tensor(input, target_is_real) |
|
|
|
return self.loss(input, target_tensor) |
|
|
|
|