import torch from torch import nn from efficientnet_pytorch import EfficientNet from pytorch_grad_cam import GradCAMElementWise from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget class Detector(nn.Module): def __init__(self): super(Detector, self).__init__() self.net=EfficientNet.from_pretrained("efficientnet-b4",advprop=True,num_classes=2) def forward(self,x): x=self.net(x) return x def create_model(path="Weights/94_0.9485_val.tar", device=torch.device('cpu')): model=Detector() model=model.to(device) if device == torch.device('cpu'): cnn_sd=torch.load(path, map_location=torch.device('cpu') )["model"] else: cnn_sd=torch.load(path)["model"] model.load_state_dict(cnn_sd) model.eval() return model def create_cam(model): target_layers = [model.net._blocks[-1]] targets = [ClassifierOutputTarget(1)] cam_algorithm = GradCAMElementWise cam = cam_algorithm(model=model,target_layers=target_layers,use_cuda=False) return cam