import torch from torch import nn from efficientnet_pytorch import EfficientNet from pytorch_grad_cam import GradCAMElementWise from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget class Detector(nn.Module): def __init__(self): super(Detector, self).__init__() self.net = EfficientNet.from_pretrained("efficientnet-b4", advprop=True, num_classes=2) def forward(self, x): x = self.net(x) return x def create_model(path="Weights/94_0.9485_val.tar", device=torch.device('cpu')): model = Detector() try: if device.type == 'cuda': model = model.half() except: model = model.float() model = model.to(device) if device == torch.device('cpu'): cnn_sd = torch.load(path, map_location=torch.device('cpu'))["model"] else: cnn_sd = torch.load(path)["model"] model.load_state_dict(cnn_sd) model.eval() return model def create_cam(model): target_layers = [model.net._blocks[-1]] targets = [ClassifierOutputTarget(1)] cam_algorithm = GradCAMElementWise use_cuda = torch.cuda.is_available() and next(model.parameters()).is_cuda cam = cam_algorithm(model=model, target_layers=target_layers, use_cuda=use_cuda) return cam