Spaces:
Running
Running
File size: 10,021 Bytes
adbf50c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
import streamlit as st
import warnings
import cv2
import dlib
from pytorch_grad_cam.utils.image import show_cam_on_image
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
import numpy as np
import torch
from retinaface.pre_trained_models import get_model
from blueprint.model import create_model, create_cam
from blueprint.preprocess import crop_face, extract_face, extract_frames
from pathlib import Path
import tempfile
import os
import io
warnings.filterwarnings('ignore')
ROOT_DIR = Path(__file__).parent.parent
def aca(img):
if len(img.shape) == 3 and img.shape[2] == 3:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img_float = img.astype(np.float32) / 255.0
channels = np.moveaxis(img_float, -1, 0)
sorted_idx = np.argsort(channels, axis=0)
sorted_values = np.take_along_axis(channels, sorted_idx, axis=0)
L = sorted_values[0]
M = sorted_values[1]
U = sorted_values[2]
eps = 1e-10
L_U = L / (U + eps)
L_M = L / (M + eps)
M_U = M / (U + eps)
kernel = np.array([[1, 0, 1], [0, -4, 0], [1, 0, 1]], dtype=np.float32)
L_U_filtered = cv2.filter2D(np.log(L_U + eps), -1, kernel)
L_M_filtered = cv2.filter2D(np.log(L_M + eps), -1, kernel)
M_U_filtered = cv2.filter2D(np.log(M_U + eps), -1, kernel)
residuals = np.abs(L_U_filtered) + np.abs(L_M_filtered) + np.abs(M_U_filtered)
p1, p99 = np.percentile(residuals[residuals > 0], (1, 99))
normalized = np.clip((residuals - p1) / (p99 - p1), 0, 1)
significant = normalized > 0.1
result = np.zeros((*residuals.shape, 3), dtype=np.float32)
result[significant, 0] = 255
intensity = np.expand_dims(normalized, -1)
result = result * intensity
return result.astype(np.uint8)
def perform_ela(img, quality=95, scale=15):
buffer = io.BytesIO()
if len(img.shape) == 3 and img.shape[2] == 3:
working_img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
else:
working_img = img.copy()
img_bytes = cv2.imencode('.jpg', working_img, [cv2.IMWRITE_JPEG_QUALITY, quality])[1].tobytes()
buffer.write(img_bytes)
buffer.seek(0)
compressed_img = cv2.imdecode(np.frombuffer(buffer.read(), np.uint8), cv2.IMREAD_COLOR)
difference = np.abs(working_img.astype(np.float32) - compressed_img.astype(np.float32)) * scale
difference = np.clip(difference, 0, 255).astype(np.uint8)
difference_rgb = cv2.cvtColor(difference, cv2.COLOR_BGR2RGB)
luminance = np.sum(difference_rgb * np.array([0.299, 0.587, 0.114]), axis=2)
enhanced = np.zeros_like(difference_rgb)
for i in range(3):
enhanced[:,:,i] = np.minimum(difference_rgb[:,:,i] * 2, 255)
mask = luminance < np.mean(luminance) * 0.5
enhanced[mask] = [0, 0, 0]
gamma = 1.4
enhanced = (((enhanced / 255.0) ** (1/gamma)) * 255).astype(np.uint8)
return difference, enhanced
@st.cache_resource
def load_models():
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
sbcl = create_model(str(ROOT_DIR / "Weights/weights.tar"), device)
face_detector = get_model("resnet50_2020-07-20", max_size=1024, device=device)
face_detector.eval()
cam_sbcl = create_cam(sbcl)
dlib_face_detector = dlib.get_frontal_face_detector()
dlib_face_predictor = dlib.shape_predictor(str(ROOT_DIR / "Weights/shape_predictor_81_face_landmarks.dat"))
return device, sbcl, face_detector, cam_sbcl, dlib_face_detector, dlib_face_predictor
def predict_image(inp, models):
device, sbcl, face_detector, cam_sbcl = models[:4]
targets = [ClassifierOutputTarget(1)]
if inp is None:
return None, None
face_list = extract_face(inp, face_detector)
if len(face_list) == 0:
return None, None
try:
img = torch.tensor(face_list).to(device)
if device.type == 'cuda':
img = img.half()
img = img / 255
with torch.no_grad():
pred = sbcl(img).float().softmax(1)[:, 1].cpu().numpy().tolist()[0]
confidences = {'Real': 1 - pred, 'Fake': pred}
img.requires_grad = True
grayscale_cam = cam_sbcl(input_tensor=img, targets=targets, aug_smooth=True)
grayscale_cam = grayscale_cam[0, :]
cam_image = show_cam_on_image(face_list[0].transpose(1, 2, 0) / 255, grayscale_cam, use_rgb=True)
return confidences, cam_image
except Exception as e:
st.error(f"Error during prediction: {str(e)}")
return None, None
def predict_video(inp, models):
device, sbcl, face_detector, cam_sbcl = models[:4]
targets = [ClassifierOutputTarget(1)]
if inp is None:
return None, None
try:
face_list, idx_list = extract_frames(inp, 10, face_detector)
if not face_list:
return None, None
img = torch.tensor(face_list).to(device)
if device.type == 'cuda':
img = img.half()
img = img / 255
with torch.no_grad():
pred = sbcl(img).float().softmax(1)[:, 1]
pred_list = []
idx_img = -1
for i in range(len(pred)):
if idx_list[i] != idx_img:
pred_list.append([])
idx_img = idx_list[i]
pred_list[-1].append(pred[i].item())
pred_res = np.array([max(p) for p in pred_list])
pred = float(pred_res.mean())
most_fake = np.argmax(pred_res)
img_for_cam = img[most_fake].unsqueeze(0)
img_for_cam.requires_grad = True
grayscale_cam = cam_sbcl(input_tensor=img_for_cam, targets=targets, aug_smooth=True)
grayscale_cam = grayscale_cam[0, :]
cam_image = show_cam_on_image(face_list[most_fake].transpose(1, 2, 0) / 255, grayscale_cam, use_rgb=True)
return {'Real': 1 - pred, 'Fake': pred}, cam_image
except Exception as e:
st.error(f"Error during video prediction: {str(e)}")
return None, None
def main():
with st.sidebar:
st.title("Deepfake Detection")
tab = st.radio("Select Input Type:", ["Image", "Video"])
if tab == "Image":
st.subheader("Analysis Visualization Options")
show_gradcam = st.checkbox("GradCAM", value=True)
show_aca = st.checkbox("ACA", value=False)
show_ela = st.checkbox("ELA", value=False)
if show_ela:
quality = st.slider("JPEG Quality", 0, 100, 95)
scale = st.slider("ELA Scale", 1, 50, 15)
models = load_models()
if tab == "Image":
st.header("Image Deepfake Detection")
num_cols = 1 + sum([show_gradcam, show_aca, show_ela])
cols = st.columns(num_cols)
col_idx = 0
with cols[col_idx]:
st.subheader("Input")
image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if image is not None:
image = cv2.imdecode(np.frombuffer(image.read(), np.uint8), cv2.IMREAD_COLOR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
st.image(image, caption="Input", use_container_width=True)
if st.button("Analyze"):
with st.spinner("Processing..."):
confidences, cam_image = predict_image(image, models)
if show_gradcam:
col_idx += 1
with cols[col_idx]:
st.subheader("GradCAM")
if confidences and cam_image is not None:
st.image(cam_image, caption="Model Focus", use_container_width=True)
for label, conf in confidences.items():
st.progress(conf, text=f"{label}: {conf*100:.1f}%")
else:
st.warning("No face detected!")
if show_aca:
col_idx += 1
with cols[col_idx]:
st.subheader("ACA")
color_map = aca(image)
st.image(color_map, use_container_width=True)
if show_ela:
col_idx += 1
with cols[col_idx]:
st.subheader("ELA")
_, ela_map = perform_ela(image, quality=quality, scale=scale)
st.image(ela_map, use_container_width=True)
else:
st.header("Video Deepfake Detection")
col1, col2 = st.columns(2)
with col1:
st.subheader("Input")
video = st.file_uploader("Choose a video...", type=["mp4", "avi", "mov"])
if video is not None:
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4', dir='/home/appuser') as tmp_file:
tmp_file.write(video.read())
video_path = tmp_file.name
st.video(video)
if st.button("Analyze"):
with st.spinner("Processing..."):
try:
confidences, cam_image = predict_video(video_path, models)
with col2:
st.subheader("Results")
if confidences and cam_image is not None:
st.image(cam_image, caption="GradCAM", use_container_width=True)
for label, conf in confidences.items():
st.progress(conf, text=f"{label}: {conf*100:.1f}%")
else:
st.warning("No faces detected!")
finally:
if os.path.exists(video_path):
os.unlink(video_path)
if __name__ == "__main__":
main() |