import streamlit as st import warnings import cv2 import dlib from pytorch_grad_cam.utils.image import show_cam_on_image from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget import numpy as np import torch from retinaface.pre_trained_models import get_model from blueprint.model import create_model, create_cam from blueprint.preprocess import crop_face, extract_face, extract_frames from pathlib import Path import tempfile import os import io warnings.filterwarnings('ignore') ROOT_DIR = Path(__file__).parent.parent def aca(img): if len(img.shape) == 3 and img.shape[2] == 3: img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img_float = img.astype(np.float32) / 255.0 channels = np.moveaxis(img_float, -1, 0) sorted_idx = np.argsort(channels, axis=0) sorted_values = np.take_along_axis(channels, sorted_idx, axis=0) L = sorted_values[0] M = sorted_values[1] U = sorted_values[2] eps = 1e-10 L_U = L / (U + eps) L_M = L / (M + eps) M_U = M / (U + eps) kernel = np.array([[1, 0, 1], [0, -4, 0], [1, 0, 1]], dtype=np.float32) L_U_filtered = cv2.filter2D(np.log(L_U + eps), -1, kernel) L_M_filtered = cv2.filter2D(np.log(L_M + eps), -1, kernel) M_U_filtered = cv2.filter2D(np.log(M_U + eps), -1, kernel) residuals = np.abs(L_U_filtered) + np.abs(L_M_filtered) + np.abs(M_U_filtered) p1, p99 = np.percentile(residuals[residuals > 0], (1, 99)) normalized = np.clip((residuals - p1) / (p99 - p1), 0, 1) significant = normalized > 0.1 result = np.zeros((*residuals.shape, 3), dtype=np.float32) result[significant, 0] = 255 intensity = np.expand_dims(normalized, -1) result = result * intensity return result.astype(np.uint8) def perform_ela(img, quality=95, scale=15): buffer = io.BytesIO() if len(img.shape) == 3 and img.shape[2] == 3: working_img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) else: working_img = img.copy() img_bytes = cv2.imencode('.jpg', working_img, [cv2.IMWRITE_JPEG_QUALITY, quality])[1].tobytes() buffer.write(img_bytes) buffer.seek(0) compressed_img = cv2.imdecode(np.frombuffer(buffer.read(), np.uint8), cv2.IMREAD_COLOR) difference = np.abs(working_img.astype(np.float32) - compressed_img.astype(np.float32)) * scale difference = np.clip(difference, 0, 255).astype(np.uint8) difference_rgb = cv2.cvtColor(difference, cv2.COLOR_BGR2RGB) luminance = np.sum(difference_rgb * np.array([0.299, 0.587, 0.114]), axis=2) enhanced = np.zeros_like(difference_rgb) for i in range(3): enhanced[:,:,i] = np.minimum(difference_rgb[:,:,i] * 2, 255) mask = luminance < np.mean(luminance) * 0.5 enhanced[mask] = [0, 0, 0] gamma = 1.4 enhanced = (((enhanced / 255.0) ** (1/gamma)) * 255).astype(np.uint8) return difference, enhanced @st.cache_resource def load_models(): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') sbcl = create_model(str(ROOT_DIR / "Weights/weights.tar"), device) face_detector = get_model("resnet50_2020-07-20", max_size=1024, device=device) face_detector.eval() cam_sbcl = create_cam(sbcl) dlib_face_detector = dlib.get_frontal_face_detector() dlib_face_predictor = dlib.shape_predictor(str(ROOT_DIR / "Weights/shape_predictor_81_face_landmarks.dat")) return device, sbcl, face_detector, cam_sbcl, dlib_face_detector, dlib_face_predictor def predict_image(inp, models): device, sbcl, face_detector, cam_sbcl = models[:4] targets = [ClassifierOutputTarget(1)] if inp is None: return None, None face_list = extract_face(inp, face_detector) if len(face_list) == 0: return None, None try: img = torch.tensor(face_list).to(device) if device.type == 'cuda': img = img.half() img = img / 255 with torch.no_grad(): pred = sbcl(img).float().softmax(1)[:, 1].cpu().numpy().tolist()[0] confidences = {'Real': 1 - pred, 'Fake': pred} img.requires_grad = True grayscale_cam = cam_sbcl(input_tensor=img, targets=targets, aug_smooth=True) grayscale_cam = grayscale_cam[0, :] cam_image = show_cam_on_image(face_list[0].transpose(1, 2, 0) / 255, grayscale_cam, use_rgb=True) return confidences, cam_image except Exception as e: st.error(f"Error during prediction: {str(e)}") return None, None def predict_video(inp, models): device, sbcl, face_detector, cam_sbcl = models[:4] targets = [ClassifierOutputTarget(1)] if inp is None: return None, None try: face_list, idx_list = extract_frames(inp, 10, face_detector) if not face_list: return None, None img = torch.tensor(face_list).to(device) if device.type == 'cuda': img = img.half() img = img / 255 with torch.no_grad(): pred = sbcl(img).float().softmax(1)[:, 1] pred_list = [] idx_img = -1 for i in range(len(pred)): if idx_list[i] != idx_img: pred_list.append([]) idx_img = idx_list[i] pred_list[-1].append(pred[i].item()) pred_res = np.array([max(p) for p in pred_list]) pred = float(pred_res.mean()) most_fake = np.argmax(pred_res) img_for_cam = img[most_fake].unsqueeze(0) img_for_cam.requires_grad = True grayscale_cam = cam_sbcl(input_tensor=img_for_cam, targets=targets, aug_smooth=True) grayscale_cam = grayscale_cam[0, :] cam_image = show_cam_on_image(face_list[most_fake].transpose(1, 2, 0) / 255, grayscale_cam, use_rgb=True) return {'Real': 1 - pred, 'Fake': pred}, cam_image except Exception as e: st.error(f"Error during video prediction: {str(e)}") return None, None def main(): with st.sidebar: st.title("Deepfake Detection") tab = st.radio("Select Input Type:", ["Image", "Video"]) if tab == "Image": st.subheader("Analysis Visualization Options") show_gradcam = st.checkbox("GradCAM", value=True) show_aca = st.checkbox("ACA", value=False) show_ela = st.checkbox("ELA", value=False) if show_ela: quality = st.slider("JPEG Quality", 0, 100, 95) scale = st.slider("ELA Scale", 1, 50, 15) models = load_models() if tab == "Image": st.header("Image Deepfake Detection") num_cols = 1 + sum([show_gradcam, show_aca, show_ela]) cols = st.columns(num_cols) col_idx = 0 with cols[col_idx]: st.subheader("Input") image = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if image is not None: image = cv2.imdecode(np.frombuffer(image.read(), np.uint8), cv2.IMREAD_COLOR) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) st.image(image, caption="Input", use_container_width=True) if st.button("Analyze"): with st.spinner("Processing..."): confidences, cam_image = predict_image(image, models) if show_gradcam: col_idx += 1 with cols[col_idx]: st.subheader("GradCAM") if confidences and cam_image is not None: st.image(cam_image, caption="Model Focus", use_container_width=True) for label, conf in confidences.items(): st.progress(conf, text=f"{label}: {conf*100:.1f}%") else: st.warning("No face detected!") if show_aca: col_idx += 1 with cols[col_idx]: st.subheader("ACA") color_map = aca(image) st.image(color_map, use_container_width=True) if show_ela: col_idx += 1 with cols[col_idx]: st.subheader("ELA") _, ela_map = perform_ela(image, quality=quality, scale=scale) st.image(ela_map, use_container_width=True) else: st.header("Video Deepfake Detection") col1, col2 = st.columns(2) with col1: st.subheader("Input") video = st.file_uploader("Choose a video...", type=["mp4", "avi", "mov"]) if video is not None: with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4', dir='/home/appuser') as tmp_file: tmp_file.write(video.read()) video_path = tmp_file.name st.video(video) if st.button("Analyze"): with st.spinner("Processing..."): try: confidences, cam_image = predict_video(video_path, models) with col2: st.subheader("Results") if confidences and cam_image is not None: st.image(cam_image, caption="GradCAM", use_container_width=True) for label, conf in confidences.items(): st.progress(conf, text=f"{label}: {conf*100:.1f}%") else: st.warning("No faces detected!") finally: if os.path.exists(video_path): os.unlink(video_path) if __name__ == "__main__": main()