Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ from dotenv import load_dotenv
|
|
7 |
from tempfile import NamedTemporaryFile
|
8 |
import math
|
9 |
from docx import Document
|
|
|
10 |
|
11 |
# Load environment variables from .env file
|
12 |
load_dotenv()
|
@@ -14,18 +15,128 @@ load_dotenv()
|
|
14 |
# Set your OpenAI API key
|
15 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def split_audio_on_silence(audio_file_path, min_silence_len=500, silence_thresh=-40, keep_silence=250):
|
18 |
"""
|
19 |
Split an audio file into chunks using silence detection.
|
20 |
-
|
21 |
-
Args:
|
22 |
-
audio_file_path (str): Path to the audio file.
|
23 |
-
min_silence_len (int): Minimum length of silence (in ms) required to be used as a split point.
|
24 |
-
silence_thresh (int): The volume (in dBFS) below which is considered silence.
|
25 |
-
keep_silence (int): Amount of silence (in ms) to retain at the beginning and end of each chunk.
|
26 |
-
|
27 |
-
Returns:
|
28 |
-
list: List of AudioSegment chunks.
|
29 |
"""
|
30 |
audio = AudioSegment.from_file(audio_file_path)
|
31 |
chunks = split_on_silence(
|
@@ -39,10 +150,11 @@ def split_audio_on_silence(audio_file_path, min_silence_len=500, silence_thresh=
|
|
39 |
def transcribe(audio_file):
|
40 |
"""
|
41 |
Transcribe an audio file using the OpenAI Whisper model.
|
42 |
-
|
|
|
43 |
Args:
|
44 |
audio_file (str): Path to the audio file.
|
45 |
-
|
46 |
Returns:
|
47 |
str: Transcribed text.
|
48 |
"""
|
@@ -51,17 +163,17 @@ def transcribe(audio_file):
|
|
51 |
model="whisper-1",
|
52 |
file=audio,
|
53 |
response_format="text",
|
54 |
-
language=
|
55 |
)
|
56 |
return response
|
57 |
|
58 |
def process_audio_chunks(audio_chunks):
|
59 |
"""
|
60 |
Process and transcribe each audio chunk.
|
61 |
-
|
62 |
Args:
|
63 |
audio_chunks (list): List of AudioSegment chunks.
|
64 |
-
|
65 |
Returns:
|
66 |
str: Combined transcription from all chunks.
|
67 |
"""
|
@@ -88,29 +200,12 @@ def process_audio_chunks(audio_chunks):
|
|
88 |
def save_transcription_to_docx(transcription, audio_file_path):
|
89 |
"""
|
90 |
Save the transcription as a .docx file.
|
91 |
-
|
92 |
-
Args:
|
93 |
-
transcription (str): Transcribed text.
|
94 |
-
audio_file_path (str): Path to the original audio file for naming purposes.
|
95 |
-
|
96 |
-
Returns:
|
97 |
-
str: Path to the saved .docx file.
|
98 |
"""
|
99 |
-
# Extract the base name of the audio file (without extension)
|
100 |
base_name = os.path.splitext(os.path.basename(audio_file_path))[0]
|
101 |
-
|
102 |
-
# Create a new file name by appending "_full_transcription" with .docx extension
|
103 |
output_file_name = f"{base_name}_full_transcription.docx"
|
104 |
-
|
105 |
-
# Create a new Document object
|
106 |
doc = Document()
|
107 |
-
|
108 |
-
# Add the transcription text to the document
|
109 |
doc.add_paragraph(transcription)
|
110 |
-
|
111 |
-
# Save the document in .docx format
|
112 |
doc.save(output_file_name)
|
113 |
-
|
114 |
return output_file_name
|
115 |
|
116 |
st.title("Audio Transcription with OpenAI's Whisper")
|
@@ -126,36 +221,32 @@ if uploaded_file is not None and st.session_state.transcription is None:
|
|
126 |
|
127 |
# Save uploaded file temporarily
|
128 |
file_extension = uploaded_file.name.split(".")[-1]
|
129 |
-
original_file_name = uploaded_file.name.rsplit('.', 1)[0]
|
130 |
temp_audio_file = f"temp_audio_file.{file_extension}"
|
131 |
with open(temp_audio_file, "wb") as f:
|
132 |
f.write(uploaded_file.getbuffer())
|
133 |
-
|
134 |
-
|
135 |
with st.spinner('Transcribing...'):
|
136 |
audio_chunks = split_audio_on_silence(
|
137 |
temp_audio_file,
|
138 |
-
min_silence_len=500,
|
139 |
-
silence_thresh=-40,
|
140 |
-
keep_silence=250
|
141 |
)
|
142 |
transcription = process_audio_chunks(audio_chunks)
|
143 |
if transcription:
|
144 |
st.session_state.transcription = transcription
|
145 |
st.success('Transcription complete!')
|
146 |
-
|
147 |
-
# Save transcription to a Word (.docx) file
|
148 |
output_docx_file = save_transcription_to_docx(transcription, uploaded_file.name)
|
149 |
st.session_state.output_docx_file = output_docx_file
|
150 |
-
|
151 |
-
|
152 |
if os.path.exists(temp_audio_file):
|
153 |
os.remove(temp_audio_file)
|
154 |
|
155 |
if st.session_state.transcription:
|
156 |
st.text_area("Transcription", st.session_state.transcription, key="transcription_area_final")
|
157 |
-
|
158 |
-
# Download the transcription as a .docx file
|
159 |
with open(st.session_state.output_docx_file, "rb") as docx_file:
|
160 |
st.download_button(
|
161 |
label="Download Transcription (.docx)",
|
|
|
7 |
from tempfile import NamedTemporaryFile
|
8 |
import math
|
9 |
from docx import Document
|
10 |
+
import time
|
11 |
|
12 |
# Load environment variables from .env file
|
13 |
load_dotenv()
|
|
|
15 |
# Set your OpenAI API key
|
16 |
openai.api_key = os.getenv("OPENAI_API_KEY")
|
17 |
|
18 |
+
# Comprehensive dictionary of languages supported by Whisper (ISO 639-1 codes)
|
19 |
+
# This list is based on the languages supported by the official Whisper model.
|
20 |
+
languages = {
|
21 |
+
"Afrikaans": "af",
|
22 |
+
"Albanian": "sq",
|
23 |
+
"Amharic": "am",
|
24 |
+
"Arabic": "ar",
|
25 |
+
"Armenian": "hy",
|
26 |
+
"Assamese": "as",
|
27 |
+
"Azerbaijani": "az",
|
28 |
+
"Basque": "eu",
|
29 |
+
"Belarusian": "be",
|
30 |
+
"Bengali": "bn",
|
31 |
+
"Bosnian": "bs",
|
32 |
+
"Bulgarian": "bg",
|
33 |
+
"Burmese": "my",
|
34 |
+
"Catalan": "ca",
|
35 |
+
"Cebuano": "ceb",
|
36 |
+
"Chichewa": "ny",
|
37 |
+
"Chinese": "zh",
|
38 |
+
"Corsican": "co",
|
39 |
+
"Croatian": "hr",
|
40 |
+
"Czech": "cs",
|
41 |
+
"Danish": "da",
|
42 |
+
"Dutch": "nl",
|
43 |
+
"English": "en",
|
44 |
+
"Esperanto": "eo",
|
45 |
+
"Estonian": "et",
|
46 |
+
"Filipino": "tl",
|
47 |
+
"Finnish": "fi",
|
48 |
+
"French": "fr",
|
49 |
+
"Frisian": "fy",
|
50 |
+
"Galician": "gl",
|
51 |
+
"Georgian": "ka",
|
52 |
+
"German": "de",
|
53 |
+
"Greek": "el",
|
54 |
+
"Gujarati": "gu",
|
55 |
+
"Haitian Creole": "ht",
|
56 |
+
"Hausa": "ha",
|
57 |
+
"Hawaiian": "haw",
|
58 |
+
"Hebrew": "he",
|
59 |
+
"Hindi": "hi",
|
60 |
+
"Hmong": "hmn",
|
61 |
+
"Hungarian": "hu",
|
62 |
+
"Icelandic": "is",
|
63 |
+
"Igbo": "ig",
|
64 |
+
"Indonesian": "id",
|
65 |
+
"Irish": "ga",
|
66 |
+
"Italian": "it",
|
67 |
+
"Japanese": "ja",
|
68 |
+
"Javanese": "jw",
|
69 |
+
"Kannada": "kn",
|
70 |
+
"Kazakh": "kk",
|
71 |
+
"Khmer": "km",
|
72 |
+
"Kinyarwanda": "rw",
|
73 |
+
"Korean": "ko",
|
74 |
+
"Kurdish": "ku",
|
75 |
+
"Kyrgyz": "ky",
|
76 |
+
"Lao": "lo",
|
77 |
+
"Latin": "la",
|
78 |
+
"Latvian": "lv",
|
79 |
+
"Lithuanian": "lt",
|
80 |
+
"Luxembourgish": "lb",
|
81 |
+
"Macedonian": "mk",
|
82 |
+
"Malagasy": "mg",
|
83 |
+
"Malay": "ms",
|
84 |
+
"Malayalam": "ml",
|
85 |
+
"Maltese": "mt",
|
86 |
+
"Maori": "mi",
|
87 |
+
"Marathi": "mr",
|
88 |
+
"Mongolian": "mn",
|
89 |
+
"Nepali": "ne",
|
90 |
+
"Norwegian": "no",
|
91 |
+
"Nyanja": "ny",
|
92 |
+
"Odia": "or",
|
93 |
+
"Pashto": "ps",
|
94 |
+
"Persian": "fa",
|
95 |
+
"Polish": "pl",
|
96 |
+
"Portuguese": "pt",
|
97 |
+
"Punjabi": "pa",
|
98 |
+
"Romanian": "ro",
|
99 |
+
"Russian": "ru",
|
100 |
+
"Samoan": "sm",
|
101 |
+
"Scots Gaelic": "gd",
|
102 |
+
"Serbian": "sr",
|
103 |
+
"Sesotho": "st",
|
104 |
+
"Shona": "sn",
|
105 |
+
"Sindhi": "sd",
|
106 |
+
"Sinhala": "si",
|
107 |
+
"Slovak": "sk",
|
108 |
+
"Slovenian": "sl",
|
109 |
+
"Somali": "so",
|
110 |
+
"Spanish": "es",
|
111 |
+
"Sundanese": "su",
|
112 |
+
"Swahili": "sw",
|
113 |
+
"Swedish": "sv",
|
114 |
+
"Tajik": "tg",
|
115 |
+
"Tamil": "ta",
|
116 |
+
"Tatar": "tt",
|
117 |
+
"Telugu": "te",
|
118 |
+
"Thai": "th",
|
119 |
+
"Turkish": "tr",
|
120 |
+
"Turkmen": "tk",
|
121 |
+
"Ukrainian": "uk",
|
122 |
+
"Urdu": "ur",
|
123 |
+
"Uyghur": "ug",
|
124 |
+
"Uzbek": "uz",
|
125 |
+
"Vietnamese": "vi",
|
126 |
+
"Welsh": "cy",
|
127 |
+
"Xhosa": "xh",
|
128 |
+
"Yiddish": "yi",
|
129 |
+
"Yoruba": "yo",
|
130 |
+
"Zulu": "zu"
|
131 |
+
}
|
132 |
+
|
133 |
+
# Create a selectbox for language selection; default is English.
|
134 |
+
selected_lang_name = st.selectbox("Select transcription language", sorted(languages.keys()), index=sorted(languages.keys()).index("English"))
|
135 |
+
selected_language = languages[selected_lang_name]
|
136 |
+
|
137 |
def split_audio_on_silence(audio_file_path, min_silence_len=500, silence_thresh=-40, keep_silence=250):
|
138 |
"""
|
139 |
Split an audio file into chunks using silence detection.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
"""
|
141 |
audio = AudioSegment.from_file(audio_file_path)
|
142 |
chunks = split_on_silence(
|
|
|
150 |
def transcribe(audio_file):
|
151 |
"""
|
152 |
Transcribe an audio file using the OpenAI Whisper model.
|
153 |
+
This uses the OpenAI API with the forced language set to the selected language.
|
154 |
+
|
155 |
Args:
|
156 |
audio_file (str): Path to the audio file.
|
157 |
+
|
158 |
Returns:
|
159 |
str: Transcribed text.
|
160 |
"""
|
|
|
163 |
model="whisper-1",
|
164 |
file=audio,
|
165 |
response_format="text",
|
166 |
+
language=selected_language # Use the selected language code
|
167 |
)
|
168 |
return response
|
169 |
|
170 |
def process_audio_chunks(audio_chunks):
|
171 |
"""
|
172 |
Process and transcribe each audio chunk.
|
173 |
+
|
174 |
Args:
|
175 |
audio_chunks (list): List of AudioSegment chunks.
|
176 |
+
|
177 |
Returns:
|
178 |
str: Combined transcription from all chunks.
|
179 |
"""
|
|
|
200 |
def save_transcription_to_docx(transcription, audio_file_path):
|
201 |
"""
|
202 |
Save the transcription as a .docx file.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
"""
|
|
|
204 |
base_name = os.path.splitext(os.path.basename(audio_file_path))[0]
|
|
|
|
|
205 |
output_file_name = f"{base_name}_full_transcription.docx"
|
|
|
|
|
206 |
doc = Document()
|
|
|
|
|
207 |
doc.add_paragraph(transcription)
|
|
|
|
|
208 |
doc.save(output_file_name)
|
|
|
209 |
return output_file_name
|
210 |
|
211 |
st.title("Audio Transcription with OpenAI's Whisper")
|
|
|
221 |
|
222 |
# Save uploaded file temporarily
|
223 |
file_extension = uploaded_file.name.split(".")[-1]
|
224 |
+
original_file_name = uploaded_file.name.rsplit('.', 1)[0]
|
225 |
temp_audio_file = f"temp_audio_file.{file_extension}"
|
226 |
with open(temp_audio_file, "wb") as f:
|
227 |
f.write(uploaded_file.getbuffer())
|
228 |
+
|
229 |
+
processing_start = time.time()
|
230 |
with st.spinner('Transcribing...'):
|
231 |
audio_chunks = split_audio_on_silence(
|
232 |
temp_audio_file,
|
233 |
+
min_silence_len=500,
|
234 |
+
silence_thresh=-40,
|
235 |
+
keep_silence=250
|
236 |
)
|
237 |
transcription = process_audio_chunks(audio_chunks)
|
238 |
if transcription:
|
239 |
st.session_state.transcription = transcription
|
240 |
st.success('Transcription complete!')
|
|
|
|
|
241 |
output_docx_file = save_transcription_to_docx(transcription, uploaded_file.name)
|
242 |
st.session_state.output_docx_file = output_docx_file
|
243 |
+
processing_duration = time.time() - processing_start
|
244 |
+
st.info(f"Total processing time: {processing_duration:.2f} seconds.")
|
245 |
if os.path.exists(temp_audio_file):
|
246 |
os.remove(temp_audio_file)
|
247 |
|
248 |
if st.session_state.transcription:
|
249 |
st.text_area("Transcription", st.session_state.transcription, key="transcription_area_final")
|
|
|
|
|
250 |
with open(st.session_state.output_docx_file, "rb") as docx_file:
|
251 |
st.download_button(
|
252 |
label="Download Transcription (.docx)",
|