Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import streamlit as st
|
3 |
+
import openai
|
4 |
+
import os
|
5 |
+
from pydub import AudioSegment
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
from tempfile import NamedTemporaryFile
|
8 |
+
import math
|
9 |
+
from docx import Document
|
10 |
+
|
11 |
+
# Load environment variables from .env file
|
12 |
+
load_dotenv()
|
13 |
+
|
14 |
+
# Set your OpenAI API key
|
15 |
+
openai.api_key = os.getenv("OPENAI_API_KEY")
|
16 |
+
|
17 |
+
def get_chunk_length_ms(file_path, target_size_mb):
|
18 |
+
"""
|
19 |
+
Calculate the length of each chunk in milliseconds to create chunks of approximately target_size_mb.
|
20 |
+
|
21 |
+
Args:
|
22 |
+
file_path (str): Path to the audio file.
|
23 |
+
target_size_mb (int): Target size of each chunk in megabytes.
|
24 |
+
|
25 |
+
Returns:
|
26 |
+
int: Chunk length in milliseconds.
|
27 |
+
"""
|
28 |
+
audio = AudioSegment.from_file(file_path)
|
29 |
+
file_size_bytes = os.path.getsize(file_path)
|
30 |
+
duration_ms = len(audio)
|
31 |
+
|
32 |
+
# Calculate the approximate duration per byte
|
33 |
+
duration_per_byte = duration_ms / file_size_bytes
|
34 |
+
|
35 |
+
# Calculate the chunk length in milliseconds for the target size
|
36 |
+
chunk_length_ms = target_size_mb * 1024 * 1024 * duration_per_byte
|
37 |
+
return math.floor(chunk_length_ms)
|
38 |
+
|
39 |
+
def split_audio(audio_file_path, chunk_length_ms):
|
40 |
+
"""
|
41 |
+
Split an audio file into chunks of specified length.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
audio_file_path (str): Path to the audio file.
|
45 |
+
chunk_length_ms (int): Length of each chunk in milliseconds.
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
list: List of AudioSegment chunks.
|
49 |
+
"""
|
50 |
+
audio = AudioSegment.from_file(audio_file_path)
|
51 |
+
|
52 |
+
chunks = [audio[i:i + chunk_length_ms] for i in range(0, len(audio), chunk_length_ms)]
|
53 |
+
|
54 |
+
return chunks
|
55 |
+
|
56 |
+
def transcribe(audio_file):
|
57 |
+
"""
|
58 |
+
Transcribe an audio file using OpenAI Whisper model.
|
59 |
+
|
60 |
+
Args:
|
61 |
+
audio_file (str): Path to the audio file.
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
str: Transcribed text.
|
65 |
+
"""
|
66 |
+
with open(audio_file, "rb") as audio:
|
67 |
+
response = openai.audio.transcriptions.create(
|
68 |
+
model="whisper-1",
|
69 |
+
file=audio,
|
70 |
+
response_format="text",
|
71 |
+
language="en" # Ensures transcription is in English
|
72 |
+
)
|
73 |
+
return response
|
74 |
+
|
75 |
+
def process_audio_chunks(audio_chunks):
|
76 |
+
"""
|
77 |
+
Process and transcribe each audio chunk.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
audio_chunks (list): List of AudioSegment chunks.
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
str: Combined transcription from all chunks.
|
84 |
+
"""
|
85 |
+
transcriptions = []
|
86 |
+
min_length_ms = 100 # Minimum length required by OpenAI API (0.1 seconds)
|
87 |
+
|
88 |
+
for i, chunk in enumerate(audio_chunks):
|
89 |
+
if len(chunk) < min_length_ms:
|
90 |
+
st.warning(f"Chunk {i} is too short to be processed.")
|
91 |
+
continue
|
92 |
+
|
93 |
+
with NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
|
94 |
+
chunk.export(temp_audio_file.name, format="wav")
|
95 |
+
temp_audio_file_path = temp_audio_file.name
|
96 |
+
|
97 |
+
transcription = transcribe(temp_audio_file_path)
|
98 |
+
if transcription:
|
99 |
+
transcriptions.append(transcription)
|
100 |
+
st.write(f"Transcription for chunk {i}: {transcription}")
|
101 |
+
|
102 |
+
os.remove(temp_audio_file_path)
|
103 |
+
return " ".join(transcriptions)
|
104 |
+
|
105 |
+
def save_transcription_to_docx(transcription, audio_file_path):
|
106 |
+
"""
|
107 |
+
Save the transcription as a .docx file.
|
108 |
+
|
109 |
+
Args:
|
110 |
+
transcription (str): Transcribed text.
|
111 |
+
audio_file_path (str): Path to the original audio file for naming purposes.
|
112 |
+
|
113 |
+
Returns:
|
114 |
+
str: Path to the saved .docx file.
|
115 |
+
"""
|
116 |
+
# Extract the base name of the audio file (without extension)
|
117 |
+
base_name = os.path.splitext(os.path.basename(audio_file_path))[0]
|
118 |
+
|
119 |
+
# Create a new file name by appending "_full_transcription" with .docx extension
|
120 |
+
output_file_name = f"{base_name}_full_transcription.docx"
|
121 |
+
|
122 |
+
# Create a new Document object
|
123 |
+
doc = Document()
|
124 |
+
|
125 |
+
# Add the transcription text to the document
|
126 |
+
doc.add_paragraph(transcription)
|
127 |
+
|
128 |
+
# Save the document in .docx format
|
129 |
+
doc.save(output_file_name)
|
130 |
+
|
131 |
+
return output_file_name
|
132 |
+
|
133 |
+
st.title("Audio Transcription with OpenAI's Whisper")
|
134 |
+
|
135 |
+
# uploaded_file = st.file_uploader("Upload an audio file", type=["wav", "mp3", "ogg", "m4a"])
|
136 |
+
uploaded_file = st.file_uploader("Upload an audio or video file", type=["wav", "mp3", "ogg", "m4a", "mp4", "mov"])
|
137 |
+
|
138 |
+
|
139 |
+
if 'transcription' not in st.session_state:
|
140 |
+
st.session_state.transcription = None
|
141 |
+
|
142 |
+
if uploaded_file is not None and st.session_state.transcription is None:
|
143 |
+
st.audio(uploaded_file)
|
144 |
+
|
145 |
+
# Save uploaded file temporarily
|
146 |
+
file_extension = uploaded_file.name.split(".")[-1]
|
147 |
+
original_file_name = uploaded_file.name.rsplit('.', 1)[0] # Get the original file name without extension
|
148 |
+
temp_audio_file = f"temp_audio_file.{file_extension}"
|
149 |
+
with open(temp_audio_file, "wb") as f:
|
150 |
+
f.write(uploaded_file.getbuffer())
|
151 |
+
|
152 |
+
# Split and process audio
|
153 |
+
with st.spinner('Transcribing...'):
|
154 |
+
chunk_length_ms = get_chunk_length_ms(temp_audio_file, target_size_mb=1)
|
155 |
+
audio_chunks = split_audio(temp_audio_file, chunk_length_ms)
|
156 |
+
transcription = process_audio_chunks(audio_chunks)
|
157 |
+
if transcription:
|
158 |
+
st.session_state.transcription = transcription
|
159 |
+
st.success('Transcription complete!')
|
160 |
+
|
161 |
+
# Save transcription to a Word (.docx) file
|
162 |
+
output_docx_file = save_transcription_to_docx(transcription, uploaded_file.name)
|
163 |
+
st.session_state.output_docx_file = output_docx_file
|
164 |
+
|
165 |
+
# Clean up temporary file
|
166 |
+
if os.path.exists(temp_audio_file):
|
167 |
+
os.remove(temp_audio_file)
|
168 |
+
|
169 |
+
if st.session_state.transcription:
|
170 |
+
st.text_area("Transcription", st.session_state.transcription, key="transcription_area_final")
|
171 |
+
|
172 |
+
# Download the transcription as a .docx file
|
173 |
+
with open(st.session_state.output_docx_file, "rb") as docx_file:
|
174 |
+
st.download_button(
|
175 |
+
label="Download Transcription (.docx)",
|
176 |
+
data=docx_file,
|
177 |
+
file_name=st.session_state.output_docx_file,
|
178 |
+
mime='application/vnd.openxmlformats-officedocument.wordprocessingml.document'
|
179 |
+
)
|
180 |
+
|