import streamlit as st import openai import os from pydub import AudioSegment from pydub.silence import split_on_silence from dotenv import load_dotenv from tempfile import NamedTemporaryFile import math from docx import Document # Load environment variables from .env file load_dotenv() # Set your OpenAI API key openai.api_key = os.getenv("OPENAI_API_KEY") def split_audio_on_silence(audio_file_path, min_silence_len=500, silence_thresh=-40, keep_silence=250): """ Split an audio file into chunks using silence detection. Args: audio_file_path (str): Path to the audio file. min_silence_len (int): Minimum length of silence (in ms) required to be used as a split point. silence_thresh (int): The volume (in dBFS) below which is considered silence. keep_silence (int): Amount of silence (in ms) to retain at the beginning and end of each chunk. Returns: list: List of AudioSegment chunks. """ audio = AudioSegment.from_file(audio_file_path) chunks = split_on_silence( audio, min_silence_len=min_silence_len, silence_thresh=silence_thresh, keep_silence=keep_silence ) return chunks def transcribe(audio_file): """ Transcribe an audio file using the OpenAI Whisper model. Args: audio_file (str): Path to the audio file. Returns: str: Transcribed text. """ with open(audio_file, "rb") as audio: response = openai.audio.transcriptions.create( model="whisper-1", file=audio, response_format="text", language="en" # Ensures transcription is in English ) return response def process_audio_chunks(audio_chunks): """ Process and transcribe each audio chunk. Args: audio_chunks (list): List of AudioSegment chunks. Returns: str: Combined transcription from all chunks. """ transcriptions = [] min_length_ms = 100 # Minimum length required by OpenAI API (0.1 seconds) for i, chunk in enumerate(audio_chunks): if len(chunk) < min_length_ms: st.warning(f"Chunk {i} is too short to be processed.") continue with NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file: chunk.export(temp_audio_file.name, format="wav") temp_audio_file_path = temp_audio_file.name transcription = transcribe(temp_audio_file_path) if transcription: transcriptions.append(transcription) st.write(f"Transcription for chunk {i}: {transcription}") os.remove(temp_audio_file_path) return " ".join(transcriptions) def save_transcription_to_docx(transcription, audio_file_path): """ Save the transcription as a .docx file. Args: transcription (str): Transcribed text. audio_file_path (str): Path to the original audio file for naming purposes. Returns: str: Path to the saved .docx file. """ # Extract the base name of the audio file (without extension) base_name = os.path.splitext(os.path.basename(audio_file_path))[0] # Create a new file name by appending "_full_transcription" with .docx extension output_file_name = f"{base_name}_full_transcription.docx" # Create a new Document object doc = Document() # Add the transcription text to the document doc.add_paragraph(transcription) # Save the document in .docx format doc.save(output_file_name) return output_file_name st.title("Audio Transcription with OpenAI's Whisper") # Allow uploading of audio or video files uploaded_file = st.file_uploader("Upload an audio or video file", type=["wav", "mp3", "ogg", "m4a", "mp4", "mov"]) if 'transcription' not in st.session_state: st.session_state.transcription = None if uploaded_file is not None and st.session_state.transcription is None: st.audio(uploaded_file) # Save uploaded file temporarily file_extension = uploaded_file.name.split(".")[-1] original_file_name = uploaded_file.name.rsplit('.', 1)[0] # Get original file name without extension temp_audio_file = f"temp_audio_file.{file_extension}" with open(temp_audio_file, "wb") as f: f.write(uploaded_file.getbuffer()) # Split and process audio using silence detection with st.spinner('Transcribing...'): audio_chunks = split_audio_on_silence( temp_audio_file, min_silence_len=500, # adjust based on your audio characteristics silence_thresh=-40, # adjust based on the ambient noise level keep_silence=250 # optional: keeps a bit of silence at the edges ) transcription = process_audio_chunks(audio_chunks) if transcription: st.session_state.transcription = transcription st.success('Transcription complete!') # Save transcription to a Word (.docx) file output_docx_file = save_transcription_to_docx(transcription, uploaded_file.name) st.session_state.output_docx_file = output_docx_file # Clean up temporary file if os.path.exists(temp_audio_file): os.remove(temp_audio_file) if st.session_state.transcription: st.text_area("Transcription", st.session_state.transcription, key="transcription_area_final") # Download the transcription as a .docx file with open(st.session_state.output_docx_file, "rb") as docx_file: st.download_button( label="Download Transcription (.docx)", data=docx_file, file_name=st.session_state.output_docx_file, mime='application/vnd.openxmlformats-officedocument.wordprocessingml.document' )