Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Box prompt working
Browse files- app.py +55 -12
- utils/efficient_sam.py +47 -0
app.py
CHANGED
@@ -1,29 +1,40 @@
|
|
1 |
-
import
|
|
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import supervision as sv
|
5 |
-
from PIL import Image
|
6 |
import torch
|
|
|
7 |
from transformers import SamModel, SamProcessor
|
8 |
-
from typing import Tuple
|
9 |
|
|
|
10 |
|
11 |
MARKDOWN = """
|
12 |
# EfficientSAM sv. SAM
|
|
|
|
|
|
|
|
|
13 |
"""
|
14 |
|
15 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
SAM_MODEL = SamModel.from_pretrained("facebook/sam-vit-huge").to(DEVICE)
|
17 |
SAM_PROCESSOR = SamProcessor.from_pretrained("facebook/sam-vit-huge")
|
|
|
18 |
MASK_ANNOTATOR = sv.MaskAnnotator(
|
19 |
color=sv.Color.red(),
|
20 |
color_lookup=sv.ColorLookup.INDEX)
|
|
|
|
|
|
|
21 |
|
22 |
|
23 |
def annotate_image(image: np.ndarray, detections: sv.Detections) -> np.ndarray:
|
24 |
bgr_image = image[:, :, ::-1]
|
25 |
annotated_bgr_image = MASK_ANNOTATOR.annotate(
|
26 |
scene=bgr_image, detections=detections)
|
|
|
|
|
27 |
return annotated_bgr_image[:, :, ::-1]
|
28 |
|
29 |
|
@@ -34,8 +45,11 @@ def efficient_sam_inference(
|
|
34 |
x_max: int,
|
35 |
y_max: int
|
36 |
) -> np.ndarray:
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
39 |
|
40 |
|
41 |
def sam_inference(
|
@@ -78,6 +92,10 @@ def inference(
|
|
78 |
)
|
79 |
|
80 |
|
|
|
|
|
|
|
|
|
81 |
with gr.Blocks() as demo:
|
82 |
gr.Markdown(MARKDOWN)
|
83 |
with gr.Tab(label="Box prompt"):
|
@@ -90,8 +108,8 @@ with gr.Blocks() as demo:
|
|
90 |
y_min_number = gr.Number(label="y_min")
|
91 |
x_max_number = gr.Number(label="x_max")
|
92 |
y_max_number = gr.Number(label="y_max")
|
93 |
-
efficient_sam_output_image = gr.Image()
|
94 |
-
sam_output_image = gr.Image()
|
95 |
with gr.Row():
|
96 |
submit_button = gr.Button("Submit")
|
97 |
|
@@ -99,11 +117,32 @@ with gr.Blocks() as demo:
|
|
99 |
fn=inference,
|
100 |
examples=[
|
101 |
[
|
102 |
-
'https://media.roboflow.com/
|
103 |
69,
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
]
|
108 |
],
|
109 |
inputs=[input_image, x_min_number, y_min_number, x_max_number, y_max_number],
|
@@ -115,11 +154,15 @@ with gr.Blocks() as demo:
|
|
115 |
inputs=[input_image, x_min_number, y_min_number, x_max_number, y_max_number],
|
116 |
outputs=efficient_sam_output_image
|
117 |
)
|
118 |
-
|
119 |
submit_button.click(
|
120 |
sam_inference,
|
121 |
inputs=[input_image, x_min_number, y_min_number, x_max_number, y_max_number],
|
122 |
outputs=sam_output_image
|
123 |
)
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
demo.launch(debug=False, show_error=True)
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
|
3 |
import gradio as gr
|
4 |
import numpy as np
|
5 |
import supervision as sv
|
|
|
6 |
import torch
|
7 |
+
from PIL import Image
|
8 |
from transformers import SamModel, SamProcessor
|
|
|
9 |
|
10 |
+
from utils.efficient_sam import load, inference_with_box
|
11 |
|
12 |
MARKDOWN = """
|
13 |
# EfficientSAM sv. SAM
|
14 |
+
|
15 |
+
This is a demo for comparing the performance of
|
16 |
+
[EfficientSAM](https://arxiv.org/abs/2312.00863) and
|
17 |
+
[SAM](https://arxiv.org/abs/2304.02643).
|
18 |
"""
|
19 |
|
20 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
SAM_MODEL = SamModel.from_pretrained("facebook/sam-vit-huge").to(DEVICE)
|
22 |
SAM_PROCESSOR = SamProcessor.from_pretrained("facebook/sam-vit-huge")
|
23 |
+
EFFICIENT_SAM_MODEL = load(device=DEVICE)
|
24 |
MASK_ANNOTATOR = sv.MaskAnnotator(
|
25 |
color=sv.Color.red(),
|
26 |
color_lookup=sv.ColorLookup.INDEX)
|
27 |
+
BOX_ANNOTATOR = sv.BoundingBoxAnnotator(
|
28 |
+
color=sv.Color.red(),
|
29 |
+
color_lookup=sv.ColorLookup.INDEX)
|
30 |
|
31 |
|
32 |
def annotate_image(image: np.ndarray, detections: sv.Detections) -> np.ndarray:
|
33 |
bgr_image = image[:, :, ::-1]
|
34 |
annotated_bgr_image = MASK_ANNOTATOR.annotate(
|
35 |
scene=bgr_image, detections=detections)
|
36 |
+
annotated_bgr_image = BOX_ANNOTATOR.annotate(
|
37 |
+
scene=annotated_bgr_image, detections=detections)
|
38 |
return annotated_bgr_image[:, :, ::-1]
|
39 |
|
40 |
|
|
|
45 |
x_max: int,
|
46 |
y_max: int
|
47 |
) -> np.ndarray:
|
48 |
+
box = np.array([[x_min, y_min], [x_max, y_max]])
|
49 |
+
mask = inference_with_box(image, box, EFFICIENT_SAM_MODEL, DEVICE)
|
50 |
+
mask = mask[np.newaxis, ...]
|
51 |
+
detections = sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)
|
52 |
+
return annotate_image(image=image, detections=detections)
|
53 |
|
54 |
|
55 |
def sam_inference(
|
|
|
92 |
)
|
93 |
|
94 |
|
95 |
+
def clear(image: np.ndarray) -> Tuple[None, None]:
|
96 |
+
return (None, None)
|
97 |
+
|
98 |
+
|
99 |
with gr.Blocks() as demo:
|
100 |
gr.Markdown(MARKDOWN)
|
101 |
with gr.Tab(label="Box prompt"):
|
|
|
108 |
y_min_number = gr.Number(label="y_min")
|
109 |
x_max_number = gr.Number(label="x_max")
|
110 |
y_max_number = gr.Number(label="y_max")
|
111 |
+
efficient_sam_output_image = gr.Image(label="EfficientSAM")
|
112 |
+
sam_output_image = gr.Image(label="SAM")
|
113 |
with gr.Row():
|
114 |
submit_button = gr.Button("Submit")
|
115 |
|
|
|
117 |
fn=inference,
|
118 |
examples=[
|
119 |
[
|
120 |
+
'https://media.roboflow.com/efficient-sam/beagle.jpeg',
|
121 |
69,
|
122 |
+
26,
|
123 |
+
625,
|
124 |
+
704
|
125 |
+
],
|
126 |
+
[
|
127 |
+
'https://media.roboflow.com/efficient-sam/corgi.jpg',
|
128 |
+
801,
|
129 |
+
510,
|
130 |
+
1782,
|
131 |
+
993
|
132 |
+
],
|
133 |
+
[
|
134 |
+
'https://media.roboflow.com/efficient-sam/horses.jpg',
|
135 |
+
814,
|
136 |
+
696,
|
137 |
+
1523,
|
138 |
+
1183
|
139 |
+
],
|
140 |
+
[
|
141 |
+
'https://media.roboflow.com/efficient-sam/bears.jpg',
|
142 |
+
653,
|
143 |
+
874,
|
144 |
+
1173,
|
145 |
+
1229
|
146 |
]
|
147 |
],
|
148 |
inputs=[input_image, x_min_number, y_min_number, x_max_number, y_max_number],
|
|
|
154 |
inputs=[input_image, x_min_number, y_min_number, x_max_number, y_max_number],
|
155 |
outputs=efficient_sam_output_image
|
156 |
)
|
|
|
157 |
submit_button.click(
|
158 |
sam_inference,
|
159 |
inputs=[input_image, x_min_number, y_min_number, x_max_number, y_max_number],
|
160 |
outputs=sam_output_image
|
161 |
)
|
162 |
+
input_image.change(
|
163 |
+
clear,
|
164 |
+
inputs=input_image,
|
165 |
+
outputs=[efficient_sam_output_image, sam_output_image]
|
166 |
+
)
|
167 |
|
168 |
demo.launch(debug=False, show_error=True)
|
utils/efficient_sam.py
CHANGED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
from torchvision.transforms import ToTensor
|
4 |
+
|
5 |
+
GPU_EFFICIENT_SAM_CHECKPOINT = "efficient_sam_s_gpu.jit"
|
6 |
+
CPU_EFFICIENT_SAM_CHECKPOINT = "efficient_sam_s_cpu.jit"
|
7 |
+
|
8 |
+
|
9 |
+
def load(device: torch.device) -> torch.jit.ScriptModule:
|
10 |
+
if device.type == "cuda":
|
11 |
+
model = torch.jit.load(GPU_EFFICIENT_SAM_CHECKPOINT)
|
12 |
+
else:
|
13 |
+
model = torch.jit.load(CPU_EFFICIENT_SAM_CHECKPOINT)
|
14 |
+
model.eval()
|
15 |
+
return model
|
16 |
+
|
17 |
+
|
18 |
+
def inference_with_box(
|
19 |
+
image: np.ndarray,
|
20 |
+
box: np.ndarray,
|
21 |
+
model: torch.jit.ScriptModule,
|
22 |
+
device: torch.device
|
23 |
+
) -> np.ndarray:
|
24 |
+
bbox = torch.reshape(torch.tensor(box), [1, 1, 2, 2])
|
25 |
+
bbox_labels = torch.reshape(torch.tensor([2, 3]), [1, 1, 2])
|
26 |
+
img_tensor = ToTensor()(image)
|
27 |
+
|
28 |
+
predicted_logits, predicted_iou = model(
|
29 |
+
img_tensor[None, ...].to(device),
|
30 |
+
bbox.to(device),
|
31 |
+
bbox_labels.to(device),
|
32 |
+
)
|
33 |
+
predicted_logits = predicted_logits.cpu()
|
34 |
+
all_masks = torch.ge(torch.sigmoid(predicted_logits[0, 0, :, :, :]), 0.5).numpy()
|
35 |
+
predicted_iou = predicted_iou[0, 0, ...].cpu().detach().numpy()
|
36 |
+
|
37 |
+
max_predicted_iou = -1
|
38 |
+
selected_mask_using_predicted_iou = None
|
39 |
+
for m in range(all_masks.shape[0]):
|
40 |
+
curr_predicted_iou = predicted_iou[m]
|
41 |
+
if (
|
42 |
+
curr_predicted_iou > max_predicted_iou
|
43 |
+
or selected_mask_using_predicted_iou is None
|
44 |
+
):
|
45 |
+
max_predicted_iou = curr_predicted_iou
|
46 |
+
selected_mask_using_predicted_iou = all_masks[m]
|
47 |
+
return selected_mask_using_predicted_iou
|