from typing import Tuple import gradio as gr import numpy as np import supervision as sv import torch from PIL import Image from transformers import SamModel, SamProcessor from utils.efficient_sam import load, inference_with_box MARKDOWN = """ # EfficientSAM sv. SAM This is a demo for ⚔️ SAM Battlegrounds - a speed and accuracy comparison between [EfficientSAM](https://arxiv.org/abs/2312.00863) and [SAM](https://arxiv.org/abs/2304.02643). """ DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") SAM_MODEL = SamModel.from_pretrained("facebook/sam-vit-huge").to(DEVICE) SAM_PROCESSOR = SamProcessor.from_pretrained("facebook/sam-vit-huge") EFFICIENT_SAM_MODEL = load(device=DEVICE) MASK_ANNOTATOR = sv.MaskAnnotator( color=sv.Color.red(), color_lookup=sv.ColorLookup.INDEX) BOX_ANNOTATOR = sv.BoundingBoxAnnotator( color=sv.Color.red(), color_lookup=sv.ColorLookup.INDEX) def annotate_image(image: np.ndarray, detections: sv.Detections) -> np.ndarray: bgr_image = image[:, :, ::-1] annotated_bgr_image = MASK_ANNOTATOR.annotate( scene=bgr_image, detections=detections) annotated_bgr_image = BOX_ANNOTATOR.annotate( scene=annotated_bgr_image, detections=detections) return annotated_bgr_image[:, :, ::-1] def efficient_sam_inference( image: np.ndarray, x_min: int, y_min: int, x_max: int, y_max: int ) -> np.ndarray: box = np.array([[x_min, y_min], [x_max, y_max]]) mask = inference_with_box(image, box, EFFICIENT_SAM_MODEL, DEVICE) mask = mask[np.newaxis, ...] detections = sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask) return annotate_image(image=image, detections=detections) def sam_inference( image: np.ndarray, x_min: int, y_min: int, x_max: int, y_max: int ) -> np.ndarray: input_boxes = [[[x_min, y_min, x_max, y_max]]] inputs = SAM_PROCESSOR( Image.fromarray(image), input_boxes=[input_boxes], return_tensors="pt" ).to(DEVICE) with torch.no_grad(): outputs = SAM_MODEL(**inputs) mask = SAM_PROCESSOR.image_processor.post_process_masks( outputs.pred_masks.cpu(), inputs["original_sizes"].cpu(), inputs["reshaped_input_sizes"].cpu() )[0][0][0].numpy() mask = mask[np.newaxis, ...] detections = sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask) return annotate_image(image=image, detections=detections) def inference( image: np.ndarray, x_min: int, y_min: int, x_max: int, y_max: int ) -> Tuple[np.ndarray, np.ndarray]: return ( efficient_sam_inference(image, x_min, y_min, x_max, y_max), sam_inference(image, x_min, y_min, x_max, y_max) ) def clear(_: np.ndarray) -> Tuple[None, None]: return None, None with gr.Blocks() as demo: gr.Markdown(MARKDOWN) with gr.Tab(label="Box prompt"): with gr.Row(): with gr.Column(): input_image = gr.Image() with gr.Accordion(label="Box", open=False): with gr.Row(): x_min_number = gr.Number(label="x_min") y_min_number = gr.Number(label="y_min") x_max_number = gr.Number(label="x_max") y_max_number = gr.Number(label="y_max") efficient_sam_output_image = gr.Image(label="EfficientSAM") sam_output_image = gr.Image(label="SAM") with gr.Row(): submit_button = gr.Button("Submit") gr.Examples( fn=inference, examples=[ [ 'https://media.roboflow.com/efficient-sam/beagle.jpeg', 69, 26, 625, 704 ], [ 'https://media.roboflow.com/efficient-sam/corgi.jpg', 801, 510, 1782, 993 ], [ 'https://media.roboflow.com/efficient-sam/horses.jpg', 814, 696, 1523, 1183 ], [ 'https://media.roboflow.com/efficient-sam/bears.jpg', 653, 874, 1173, 1229 ] ], inputs=[input_image, x_min_number, y_min_number, x_max_number, y_max_number], outputs=[efficient_sam_output_image, sam_output_image], ) submit_button.click( efficient_sam_inference, inputs=[input_image, x_min_number, y_min_number, x_max_number, y_max_number], outputs=efficient_sam_output_image ) submit_button.click( sam_inference, inputs=[input_image, x_min_number, y_min_number, x_max_number, y_max_number], outputs=sam_output_image ) input_image.change( clear, inputs=input_image, outputs=[efficient_sam_output_image, sam_output_image] ) demo.launch(debug=False, show_error=True)