SkalskiP's picture
The existing video processing pipeline was enhanced by adding segmentation and mask generation functionality.
c34b7e0
raw
history blame
5.13 kB
import uuid
from typing import Tuple, List
import gradio as gr
import numpy as np
import supervision as sv
import torch
from PIL import Image
from tqdm import tqdm
from transformers import pipeline, CLIPModel, CLIPProcessor
MARKDOWN = """
# Auto ProPainter
This is a demo for automatic removal of objects from videos using
[Segment Anything Model](https://github.com/facebookresearch/segment-anything),
[MetaCLIP](https://github.com/facebookresearch/MetaCLIP), and
[ProPainter](https://github.com/sczhou/ProPainter) combo.
"""
START_FRAME = 0
END_FRAME = 10
TOTAL = END_FRAME - START_FRAME
MINIMUM_AREA = 0.01
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
SAM_GENERATOR = pipeline(
task="mask-generation",
model="facebook/sam-vit-large",
device=DEVICE)
CLIP_MODEL = CLIPModel.from_pretrained("facebook/metaclip-b32-400m").to(DEVICE)
CLIP_PROCESSOR = CLIPProcessor.from_pretrained("facebook/metaclip-b32-400m")
def run_sam(frame: np.ndarray) -> sv.Detections:
# convert from Numpy BGR to PIL RGB
image = Image.fromarray(frame[:, :, ::-1])
outputs = SAM_GENERATOR(image)
mask = np.array(outputs['masks'])
return sv.Detections(xyxy=sv.mask_to_xyxy(masks=mask), mask=mask)
def run_clip(frame: np.ndarray, text: List[str]) -> np.ndarray:
# convert from Numpy BGR to PIL RGB
image = Image.fromarray(frame[:, :, ::-1])
inputs = CLIP_PROCESSOR(text=text, images=image, return_tensors="pt").to(DEVICE)
outputs = CLIP_MODEL(**inputs)
probs = outputs.logits_per_image.softmax(dim=1)
return probs.detach().cpu().numpy()
def gray_background(image: np.ndarray, mask: np.ndarray, gray_value=128):
gray_color = np.array([gray_value, gray_value, gray_value], dtype=np.uint8)
return np.where(mask[..., None], image, gray_color)
def filter_detections_by_area(frame: np.ndarray, detections: sv.Detections, minimum_area: float) -> sv.Detections:
frame_width, frame_height = frame.shape[1], frame.shape[0]
frame_area = frame_width * frame_height
return detections[detections.area > minimum_area * frame_area]
def filter_detections_by_prompt(frame: np.ndarray, detections: sv.Detections, prompt: str, confidence: float) -> sv.Detections:
text = [f"a picture of {prompt}", "a picture of background"]
filtering_mask = []
for xyxy, mask in zip(detections.xyxy, detections.mask):
crop = gray_background(
image=sv.crop_image(image=frame, xyxy=xyxy),
mask=sv.crop_image(image=mask, xyxy=xyxy))
probs = run_clip(frame=crop, text=text)
filtering_mask.append(probs[0][0] > confidence)
return detections[np.array(filtering_mask)]
def mask_frame(frame: np.ndarray, prompt: str, confidence: float) -> np.ndarray:
detections = run_sam(frame)
detections = filter_detections_by_area(
frame=frame, detections=detections, minimum_area=MINIMUM_AREA)
detections = filter_detections_by_prompt(
frame=frame, detections=detections, prompt=prompt, confidence=confidence)
# converting set of masks to a single mask
mask = np.any(detections.mask, axis=0).astype(np.uint8) * 255
# converting single channel mask to 3 channel mask
return np.repeat(mask[:, :, np.newaxis], 3, axis=2)
def mask_video(source_video: str, prompt: str, confidence: float, name: str) -> str:
video_info = sv.VideoInfo.from_video_path(source_video)
frame_iterator = iter(sv.get_video_frames_generator(
source_path=source_video, start=START_FRAME, end=END_FRAME))
with sv.ImageSink(name, image_name_pattern="{:05d}.png") as image_sink:
with sv.VideoSink(f"{name}.mp4", video_info=video_info) as video_sink:
for _ in tqdm(range(TOTAL), desc="Masking frames"):
frame = next(frame_iterator)
annotated_frame = mask_frame(frame, prompt, confidence)
video_sink.write_frame(annotated_frame)
image_sink.save_image(annotated_frame)
return f"{name}.mp4"
def process(
source_video: str,
prompt: str,
confidence: float,
progress=gr.Progress(track_tqdm=True)
) -> Tuple[str, str]:
name = str(uuid.uuid4())
masked_video = mask_video(source_video, prompt, confidence, name)
return masked_video, masked_video
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
source_video_player = gr.Video(
label="Source video", source="upload", format="mp4")
prompt_text = gr.Textbox(
label="Prompt", value="person")
confidence_slider = gr.Slider(
label="Confidence", minimum=0.5, maximum=1.0, step=0.05, value=0.6)
submit_button = gr.Button("Submit")
with gr.Column():
masked_video_player = gr.Video(label="Masked video")
painted_video_player = gr.Video(label="Painted video")
submit_button.click(
process,
inputs=[source_video_player, prompt_text, confidence_slider],
outputs=[masked_video_player, painted_video_player])
demo.queue().launch(debug=False, show_error=True)