Spaces:
Running
on
Zero
Running
on
Zero
OCR tasks added
Browse files- app.py +47 -9
- utils/tasks.py +8 -2
app.py
CHANGED
@@ -7,7 +7,7 @@ from utils.annotate import annotate_with_boxes
|
|
7 |
from utils.models import load_models, run_inference, CHECKPOINTS
|
8 |
from utils.tasks import TASK_NAMES, TASKS, OBJECT_DETECTION_TASK_NAME, \
|
9 |
CAPTION_TASK_NAMES, CAPTION_TASK_NAME, DETAILED_CAPTION_TASK_NAME, \
|
10 |
-
MORE_DETAILED_CAPTION_TASK_NAME
|
11 |
|
12 |
MARKDOWN = """
|
13 |
# Better Florence-2 Playground 🔥
|
@@ -25,6 +25,15 @@ MARKDOWN = """
|
|
25 |
<img src="https://badges.aleen42.com/src/youtube.svg" alt="YouTube" style="display:inline-block;">
|
26 |
</a>
|
27 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
"""
|
29 |
|
30 |
OBJECT_DETECTION_EXAMPLES = [
|
@@ -35,6 +44,13 @@ CAPTION_EXAMPLES = [
|
|
35 |
["microsoft/Florence-2-large-ft", DETAILED_CAPTION_TASK_NAME, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg"],
|
36 |
["microsoft/Florence-2-large-ft", MORE_DETAILED_CAPTION_TASK_NAME, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg"]
|
37 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
40 |
MODELS, PROCESSORS = load_models(DEVICE)
|
@@ -45,13 +61,13 @@ def process(checkpoint_dropdown, task_dropdown, image_input):
|
|
45 |
model = MODELS[checkpoint_dropdown]
|
46 |
processor = PROCESSORS[checkpoint_dropdown]
|
47 |
task = TASKS[task_dropdown]
|
48 |
-
if task_dropdown
|
49 |
_, response = run_inference(
|
50 |
model, processor, DEVICE, image_input, task)
|
51 |
detections = sv.Detections.from_lmm(
|
52 |
lmm=sv.LMM.FLORENCE_2, result=response, resolution_wh=image_input.size)
|
53 |
return annotate_with_boxes(image_input, detections)
|
54 |
-
elif task_dropdown in CAPTION_TASK_NAMES:
|
55 |
_, response = run_inference(
|
56 |
model, processor, DEVICE, image_input, task)
|
57 |
return response[task]
|
@@ -81,8 +97,9 @@ with gr.Blocks() as demo:
|
|
81 |
with gr.Column():
|
82 |
@gr.render(inputs=task_dropdown_component)
|
83 |
def show_output(text):
|
84 |
-
|
85 |
-
|
|
|
86 |
image_output_component = gr.Image(type='pil', label='Image Output')
|
87 |
submit_button_component.click(
|
88 |
fn=process,
|
@@ -93,8 +110,7 @@ with gr.Blocks() as demo:
|
|
93 |
],
|
94 |
outputs=image_output_component
|
95 |
)
|
96 |
-
elif text in CAPTION_TASK_NAMES:
|
97 |
-
global text_output_component
|
98 |
text_output_component = gr.Textbox(label='Caption Output')
|
99 |
submit_button_component.click(
|
100 |
fn=process,
|
@@ -108,8 +124,9 @@ with gr.Blocks() as demo:
|
|
108 |
|
109 |
@gr.render(inputs=task_dropdown_component)
|
110 |
def show_examples(text):
|
|
|
|
|
111 |
if text == OBJECT_DETECTION_TASK_NAME:
|
112 |
-
global image_output_component
|
113 |
gr.Examples(
|
114 |
fn=process,
|
115 |
examples=OBJECT_DETECTION_EXAMPLES,
|
@@ -121,7 +138,6 @@ with gr.Blocks() as demo:
|
|
121 |
outputs=image_output_component
|
122 |
)
|
123 |
elif text in CAPTION_TASK_NAMES:
|
124 |
-
global text_output_component
|
125 |
gr.Examples(
|
126 |
fn=process,
|
127 |
examples=CAPTION_EXAMPLES,
|
@@ -132,5 +148,27 @@ with gr.Blocks() as demo:
|
|
132 |
],
|
133 |
outputs=text_output_component
|
134 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
demo.launch(debug=False, show_error=True, max_threads=1)
|
|
|
7 |
from utils.models import load_models, run_inference, CHECKPOINTS
|
8 |
from utils.tasks import TASK_NAMES, TASKS, OBJECT_DETECTION_TASK_NAME, \
|
9 |
CAPTION_TASK_NAMES, CAPTION_TASK_NAME, DETAILED_CAPTION_TASK_NAME, \
|
10 |
+
MORE_DETAILED_CAPTION_TASK_NAME, OCR_WITH_REGION_TASK_NAME, OCR_TASK_NAME
|
11 |
|
12 |
MARKDOWN = """
|
13 |
# Better Florence-2 Playground 🔥
|
|
|
25 |
<img src="https://badges.aleen42.com/src/youtube.svg" alt="YouTube" style="display:inline-block;">
|
26 |
</a>
|
27 |
</div>
|
28 |
+
|
29 |
+
Florence-2 is a lightweight vision-language model open-sourced by Microsoft under the
|
30 |
+
MIT license. The model demonstrates strong zero-shot and fine-tuning capabilities
|
31 |
+
across tasks such as captioning, object detection, grounding, and segmentation.
|
32 |
+
|
33 |
+
The model takes images and task prompts as input, generating the desired results in
|
34 |
+
text format. It uses a DaViT vision encoder to convert images into visual token
|
35 |
+
embeddings. These are then concatenated with BERT-generated text embeddings and
|
36 |
+
processed by a transformer-based multi-modal encoder-decoder to generate the response.
|
37 |
"""
|
38 |
|
39 |
OBJECT_DETECTION_EXAMPLES = [
|
|
|
44 |
["microsoft/Florence-2-large-ft", DETAILED_CAPTION_TASK_NAME, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg"],
|
45 |
["microsoft/Florence-2-large-ft", MORE_DETAILED_CAPTION_TASK_NAME, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg"]
|
46 |
]
|
47 |
+
OCR_EXAMPLES = [
|
48 |
+
["microsoft/Florence-2-large-ft", OCR_TASK_NAME, "https://media.roboflow.com/notebooks/examples/handwritten-text.jpg"],
|
49 |
+
]
|
50 |
+
OCR_WITH_REGION_EXAMPLES = [
|
51 |
+
["microsoft/Florence-2-large-ft", OCR_WITH_REGION_TASK_NAME, "https://media.roboflow.com/notebooks/examples/handwritten-text.jpg"],
|
52 |
+
["microsoft/Florence-2-large-ft", OCR_WITH_REGION_TASK_NAME, "https://media.roboflow.com/inference/license_plate_1.jpg"]
|
53 |
+
]
|
54 |
|
55 |
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
56 |
MODELS, PROCESSORS = load_models(DEVICE)
|
|
|
61 |
model = MODELS[checkpoint_dropdown]
|
62 |
processor = PROCESSORS[checkpoint_dropdown]
|
63 |
task = TASKS[task_dropdown]
|
64 |
+
if task_dropdown in [OBJECT_DETECTION_TASK_NAME, OCR_WITH_REGION_TASK_NAME]:
|
65 |
_, response = run_inference(
|
66 |
model, processor, DEVICE, image_input, task)
|
67 |
detections = sv.Detections.from_lmm(
|
68 |
lmm=sv.LMM.FLORENCE_2, result=response, resolution_wh=image_input.size)
|
69 |
return annotate_with_boxes(image_input, detections)
|
70 |
+
elif task_dropdown in CAPTION_TASK_NAMES or task_dropdown == OCR_TASK_NAME:
|
71 |
_, response = run_inference(
|
72 |
model, processor, DEVICE, image_input, task)
|
73 |
return response[task]
|
|
|
97 |
with gr.Column():
|
98 |
@gr.render(inputs=task_dropdown_component)
|
99 |
def show_output(text):
|
100 |
+
global image_output_component
|
101 |
+
global text_output_component
|
102 |
+
if text in [OBJECT_DETECTION_TASK_NAME, OCR_WITH_REGION_TASK_NAME]:
|
103 |
image_output_component = gr.Image(type='pil', label='Image Output')
|
104 |
submit_button_component.click(
|
105 |
fn=process,
|
|
|
110 |
],
|
111 |
outputs=image_output_component
|
112 |
)
|
113 |
+
elif text in CAPTION_TASK_NAMES or text == OCR_TASK_NAME:
|
|
|
114 |
text_output_component = gr.Textbox(label='Caption Output')
|
115 |
submit_button_component.click(
|
116 |
fn=process,
|
|
|
124 |
|
125 |
@gr.render(inputs=task_dropdown_component)
|
126 |
def show_examples(text):
|
127 |
+
global image_output_component
|
128 |
+
global text_output_component
|
129 |
if text == OBJECT_DETECTION_TASK_NAME:
|
|
|
130 |
gr.Examples(
|
131 |
fn=process,
|
132 |
examples=OBJECT_DETECTION_EXAMPLES,
|
|
|
138 |
outputs=image_output_component
|
139 |
)
|
140 |
elif text in CAPTION_TASK_NAMES:
|
|
|
141 |
gr.Examples(
|
142 |
fn=process,
|
143 |
examples=CAPTION_EXAMPLES,
|
|
|
148 |
],
|
149 |
outputs=text_output_component
|
150 |
)
|
151 |
+
elif text == OCR_TASK_NAME:
|
152 |
+
gr.Examples(
|
153 |
+
fn=process,
|
154 |
+
examples=OCR_EXAMPLES,
|
155 |
+
inputs=[
|
156 |
+
checkpoint_dropdown_component,
|
157 |
+
task_dropdown_component,
|
158 |
+
image_input_component
|
159 |
+
],
|
160 |
+
outputs=text_output_component
|
161 |
+
)
|
162 |
+
elif text == OCR_WITH_REGION_TASK_NAME:
|
163 |
+
gr.Examples(
|
164 |
+
fn=process,
|
165 |
+
examples=OCR_WITH_REGION_EXAMPLES,
|
166 |
+
inputs=[
|
167 |
+
checkpoint_dropdown_component,
|
168 |
+
task_dropdown_component,
|
169 |
+
image_input_component
|
170 |
+
],
|
171 |
+
outputs=image_output_component
|
172 |
+
)
|
173 |
|
174 |
demo.launch(debug=False, show_error=True, max_threads=1)
|
utils/tasks.py
CHANGED
@@ -2,18 +2,24 @@ OBJECT_DETECTION_TASK_NAME = "Object Detection"
|
|
2 |
CAPTION_TASK_NAME = "Caption"
|
3 |
DETAILED_CAPTION_TASK_NAME = "Detailed Caption"
|
4 |
MORE_DETAILED_CAPTION_TASK_NAME = "More Detailed Caption"
|
|
|
|
|
5 |
|
6 |
TASK_NAMES = [
|
7 |
OBJECT_DETECTION_TASK_NAME,
|
8 |
CAPTION_TASK_NAME,
|
9 |
DETAILED_CAPTION_TASK_NAME,
|
10 |
-
MORE_DETAILED_CAPTION_TASK_NAME
|
|
|
|
|
11 |
]
|
12 |
TASKS = {
|
13 |
OBJECT_DETECTION_TASK_NAME: "<OD>",
|
14 |
CAPTION_TASK_NAME: "<CAPTION>",
|
15 |
DETAILED_CAPTION_TASK_NAME: "<DETAILED_CAPTION>",
|
16 |
-
MORE_DETAILED_CAPTION_TASK_NAME: "<MORE_DETAILED_CAPTION>"
|
|
|
|
|
17 |
}
|
18 |
CAPTION_TASK_NAMES = [
|
19 |
CAPTION_TASK_NAME,
|
|
|
2 |
CAPTION_TASK_NAME = "Caption"
|
3 |
DETAILED_CAPTION_TASK_NAME = "Detailed Caption"
|
4 |
MORE_DETAILED_CAPTION_TASK_NAME = "More Detailed Caption"
|
5 |
+
OCR_TASK_NAME = "OCR"
|
6 |
+
OCR_WITH_REGION_TASK_NAME = "OCR with Region"
|
7 |
|
8 |
TASK_NAMES = [
|
9 |
OBJECT_DETECTION_TASK_NAME,
|
10 |
CAPTION_TASK_NAME,
|
11 |
DETAILED_CAPTION_TASK_NAME,
|
12 |
+
MORE_DETAILED_CAPTION_TASK_NAME,
|
13 |
+
OCR_TASK_NAME,
|
14 |
+
OCR_WITH_REGION_TASK_NAME
|
15 |
]
|
16 |
TASKS = {
|
17 |
OBJECT_DETECTION_TASK_NAME: "<OD>",
|
18 |
CAPTION_TASK_NAME: "<CAPTION>",
|
19 |
DETAILED_CAPTION_TASK_NAME: "<DETAILED_CAPTION>",
|
20 |
+
MORE_DETAILED_CAPTION_TASK_NAME: "<MORE_DETAILED_CAPTION>",
|
21 |
+
OCR_TASK_NAME: "<OCR>",
|
22 |
+
OCR_WITH_REGION_TASK_NAME: "<OCR_WITH_REGION>"
|
23 |
}
|
24 |
CAPTION_TASK_NAMES = [
|
25 |
CAPTION_TASK_NAME,
|