File size: 9,482 Bytes
aabd771
5bd8d5b
fe42dd8
aabd771
5bd8d5b
 
 
61d1727
5bd8d5b
aabd771
af5888a
ec0b3c1
af5888a
aabd771
 
 
5bd8d5b
 
 
ec0b3c1
 
 
 
 
 
 
 
 
 
 
 
 
 
5bd8d5b
 
af5888a
 
5bd8d5b
aabd771
16d828f
 
 
 
 
e4d42b3
ec0b3c1
5bd8d5b
af5888a
61d1727
aabd771
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bd8d5b
aabd771
 
 
 
 
 
 
 
 
 
 
 
af5888a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bd8d5b
 
aabd771
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bd8d5b
 
ec0b3c1
 
 
 
 
 
 
af5888a
 
 
 
 
 
aabd771
 
af5888a
aa009f7
5bd8d5b
 
af5888a
 
 
aabd771
 
 
 
 
 
af5888a
aabd771
 
5bd8d5b
aabd771
 
 
16d828f
 
aabd771
16d828f
 
 
 
 
 
 
 
 
 
5bd8d5b
af5888a
 
 
 
 
aabd771
 
 
 
 
 
 
af5888a
 
aabd771
 
 
 
 
 
 
aa009f7
 
af5888a
aa009f7
af5888a
aa009f7
5bd8d5b
 
aabd771
 
 
 
 
 
 
 
 
 
5bd8d5b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import os
from typing import Optional

import cv2
import gradio as gr
import numpy as np
import supervision as sv
import torch
from PIL import Image
from tqdm import tqdm
from gradio_image_prompter import ImagePrompter

from utils.models import load_models, CHECKPOINT_NAMES, MODE_NAMES, \
    MASK_GENERATION_MODE, BOX_PROMPT_MODE, VIDEO_SEGMENTATION_MODE
from utils.video import create_directory, generate_unique_name
from sam2.build_sam import build_sam2_video_predictor

MARKDOWN = """
# Segment Anything Model 2 🔥
<div>
    <a href="https://github.com/facebookresearch/segment-anything-2">
        <img src="https://badges.aleen42.com/src/github.svg" alt="GitHub" style="display:inline-block;">
    </a>
    <a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-segment-images-with-sam-2.ipynb">
        <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab" style="display:inline-block;">
    </a>
    <a href="https://blog.roboflow.com/what-is-segment-anything-2/">
        <img src="https://raw.githubusercontent.com/roboflow-ai/notebooks/main/assets/badges/roboflow-blogpost.svg" alt="Roboflow" style="display:inline-block;">
    </a>
    <a href="https://www.youtube.com/watch?v=Dv003fTyO-Y">
        <img src="https://badges.aleen42.com/src/youtube.svg" alt="YouTube" style="display:inline-block;">
    </a>
</div>

Segment Anything Model 2 (SAM 2) is a foundation model designed to address promptable 
visual segmentation in both images and videos. **Video segmentation will be available 
soon.**
"""

EXAMPLES = [
    ["tiny", MASK_GENERATION_MODE, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", None],
    ["tiny", MASK_GENERATION_MODE, "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", None],
    ["tiny", MASK_GENERATION_MODE, "https://media.roboflow.com/notebooks/examples/dog-4.jpeg", None],
]

DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
MASK_ANNOTATOR = sv.MaskAnnotator(color_lookup=sv.ColorLookup.INDEX)
IMAGE_PREDICTORS, MASK_GENERATORS = load_models(device=DEVICE)

SCALE_FACTOR = 0.5
TARGET_DIRECTORY = "tmp"
# creating video results directory
create_directory(directory_path=TARGET_DIRECTORY)


def on_mode_dropdown_change(text):
    return [
        gr.Image(visible=text == MASK_GENERATION_MODE),
        ImagePrompter(visible=text == BOX_PROMPT_MODE),
        gr.Video(visible=text == VIDEO_SEGMENTATION_MODE),
        ImagePrompter(visible=text == VIDEO_SEGMENTATION_MODE),
        gr.Button(visible=text != VIDEO_SEGMENTATION_MODE),
        gr.Button(visible=text == VIDEO_SEGMENTATION_MODE),
        gr.Image(visible=text != VIDEO_SEGMENTATION_MODE),
        gr.Video(visible=text == VIDEO_SEGMENTATION_MODE)
    ]


def on_video_input_change(video_input):
    if not video_input:
        return None
    frames_generator = sv.get_video_frames_generator(video_input)
    frame = next(frames_generator)
    frame = sv.scale_image(frame, SCALE_FACTOR)
    frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
    frame = Image.fromarray(frame)
    return {'image': frame, 'points': []}


def process_image(
    checkpoint_dropdown,
    mode_dropdown,
    image_input,
    image_prompter_input
) -> Optional[Image.Image]:
    if mode_dropdown == BOX_PROMPT_MODE:
        image_input = image_prompter_input["image"]
        prompt = image_prompter_input["points"]
        if len(prompt) == 0:
            return image_input

        model = IMAGE_PREDICTORS[checkpoint_dropdown]
        image = np.array(image_input.convert("RGB"))
        box = np.array([[x1, y1, x2, y2] for x1, y1, _, x2, y2, _ in prompt])

        model.set_image(image)
        masks, _, _ = model.predict(box=box, multimask_output=False)

        # dirty fix; remove this later
        if len(masks.shape) == 4:
            masks = np.squeeze(masks)

        detections = sv.Detections(
            xyxy=sv.mask_to_xyxy(masks=masks),
            mask=masks.astype(bool)
        )
        return MASK_ANNOTATOR.annotate(image_input, detections)

    if mode_dropdown == MASK_GENERATION_MODE:
        model = MASK_GENERATORS[checkpoint_dropdown]
        image = np.array(image_input.convert("RGB"))
        result = model.generate(image)
        detections = sv.Detections.from_sam(result)
        return MASK_ANNOTATOR.annotate(image_input, detections)


def process_video(
    checkpoint_dropdown,
    mode_dropdown,
    video_input,
    video_prompter_input,
    progress=gr.Progress(track_tqdm=True)
) -> str:
    if mode_dropdown != VIDEO_SEGMENTATION_MODE:
        return str(video_input)

    name = generate_unique_name()
    frame_directory_path = os.path.join(TARGET_DIRECTORY, name)
    frames_sink = sv.ImageSink(
        target_dir_path=frame_directory_path,
        image_name_pattern="{:05d}.jpeg"
    )

    video_info = sv.VideoInfo.from_video_path(video_input)
    frames_generator = sv.get_video_frames_generator(video_input)
    with frames_sink:
        for frame in tqdm(
                frames_generator,
                total=video_info.total_frames,
                desc="splitting video into frames"
        ):
            frame = sv.scale_image(frame, SCALE_FACTOR)
            frames_sink.save_image(frame)

    model = build_sam2_video_predictor(
        "sam2_hiera_t.yaml",
        "checkpoints/sam2_hiera_tiny.pt",
        device=DEVICE
    )
    inference_state = model.init_state(
        video_path=frame_directory_path,
        offload_video_to_cpu=DEVICE == torch.device('cpu'),
        offload_state_to_cpu=DEVICE == torch.device('cpu'),
    )

    prompt = video_prompter_input["points"]
    points = np.array([[x1, y1] for x1, y1, _, _, _, _ in prompt])
    labels = np.ones(len(points))

    _, object_ids, mask_logits = model.add_new_points(
        inference_state=inference_state,
        frame_idx=0,
        obj_id=1,
        points=points,
        labels=labels,
    )

    del inference_state
    del model

    video_path = os.path.join(TARGET_DIRECTORY, f"{name}.mp4")
    return str(video_input)


with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)
    with gr.Row():
        checkpoint_dropdown_component = gr.Dropdown(
            choices=CHECKPOINT_NAMES,
            value=CHECKPOINT_NAMES[0],
            label="Checkpoint", info="Select a SAM2 checkpoint to use.",
            interactive=True
        )
        mode_dropdown_component = gr.Dropdown(
            choices=MODE_NAMES,
            value=MODE_NAMES[0],
            label="Mode",
            info="Select a mode to use. `box prompt` if you want to generate masks for "
                 "selected objects, `mask generation` if you want to generate masks "
                 "for the whole image, and `video segmentation` if you want to track "
                 "object on video.",
            interactive=True
        )
    with gr.Row():
        with gr.Column():
            image_input_component = gr.Image(
                type='pil', label='Upload image', visible=False)
            image_prompter_input_component = ImagePrompter(
                type='pil', label='Prompt image')
            video_input_component = gr.Video(
                label='Step 1: Upload video', visible=False)
            video_prompter_input_component = ImagePrompter(
                type='pil', label='Step 2: Prompt frame', visible=False)
            submit_image_button_component = gr.Button(
                value='Submit', variant='primary')
            submit_video_button_component = gr.Button(
                value='Submit', variant='primary', visible=False)
        with gr.Column():
            image_output_component = gr.Image(type='pil', label='Image output')
            video_output_component = gr.Video(
                label='Step 2: Video output', visible=False)
    with gr.Row():
        gr.Examples(
            fn=process_image,
            examples=EXAMPLES,
            inputs=[
                checkpoint_dropdown_component,
                mode_dropdown_component,
                image_input_component,
                image_prompter_input_component,
            ],
            outputs=[image_output_component],
            run_on_click=True
        )

    mode_dropdown_component.change(
        on_mode_dropdown_change,
        inputs=[mode_dropdown_component],
        outputs=[
            image_input_component,
            image_prompter_input_component,
            video_input_component,
            video_prompter_input_component,
            submit_image_button_component,
            submit_video_button_component,
            image_output_component,
            video_output_component
        ]
    )
    video_input_component.change(
        fn=on_video_input_change,
        inputs=[video_input_component],
        outputs=[video_prompter_input_component]
    )
    submit_image_button_component.click(
        fn=process_image,
        inputs=[
            checkpoint_dropdown_component,
            mode_dropdown_component,
            image_input_component,
            image_prompter_input_component,
        ],
        outputs=[image_output_component]
    )
    submit_video_button_component.click(
        fn=process_video,
        inputs=[
            checkpoint_dropdown_component,
            mode_dropdown_component,
            video_input_component,
            video_prompter_input_component,
        ],
        outputs=[video_output_component]
    )

demo.launch(debug=False, show_error=True, max_threads=1)