Spaces:
Runtime error
Runtime error
File size: 9,482 Bytes
aabd771 5bd8d5b fe42dd8 aabd771 5bd8d5b 61d1727 5bd8d5b aabd771 af5888a ec0b3c1 af5888a aabd771 5bd8d5b ec0b3c1 5bd8d5b af5888a 5bd8d5b aabd771 16d828f e4d42b3 ec0b3c1 5bd8d5b af5888a 61d1727 aabd771 5bd8d5b aabd771 af5888a 5bd8d5b aabd771 5bd8d5b ec0b3c1 af5888a aabd771 af5888a aa009f7 5bd8d5b af5888a aabd771 af5888a aabd771 5bd8d5b aabd771 16d828f aabd771 16d828f 5bd8d5b af5888a aabd771 af5888a aabd771 aa009f7 af5888a aa009f7 af5888a aa009f7 5bd8d5b aabd771 5bd8d5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import os
from typing import Optional
import cv2
import gradio as gr
import numpy as np
import supervision as sv
import torch
from PIL import Image
from tqdm import tqdm
from gradio_image_prompter import ImagePrompter
from utils.models import load_models, CHECKPOINT_NAMES, MODE_NAMES, \
MASK_GENERATION_MODE, BOX_PROMPT_MODE, VIDEO_SEGMENTATION_MODE
from utils.video import create_directory, generate_unique_name
from sam2.build_sam import build_sam2_video_predictor
MARKDOWN = """
# Segment Anything Model 2 🔥
<div>
<a href="https://github.com/facebookresearch/segment-anything-2">
<img src="https://badges.aleen42.com/src/github.svg" alt="GitHub" style="display:inline-block;">
</a>
<a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-segment-images-with-sam-2.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab" style="display:inline-block;">
</a>
<a href="https://blog.roboflow.com/what-is-segment-anything-2/">
<img src="https://raw.githubusercontent.com/roboflow-ai/notebooks/main/assets/badges/roboflow-blogpost.svg" alt="Roboflow" style="display:inline-block;">
</a>
<a href="https://www.youtube.com/watch?v=Dv003fTyO-Y">
<img src="https://badges.aleen42.com/src/youtube.svg" alt="YouTube" style="display:inline-block;">
</a>
</div>
Segment Anything Model 2 (SAM 2) is a foundation model designed to address promptable
visual segmentation in both images and videos. **Video segmentation will be available
soon.**
"""
EXAMPLES = [
["tiny", MASK_GENERATION_MODE, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", None],
["tiny", MASK_GENERATION_MODE, "https://media.roboflow.com/notebooks/examples/dog-3.jpeg", None],
["tiny", MASK_GENERATION_MODE, "https://media.roboflow.com/notebooks/examples/dog-4.jpeg", None],
]
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
MASK_ANNOTATOR = sv.MaskAnnotator(color_lookup=sv.ColorLookup.INDEX)
IMAGE_PREDICTORS, MASK_GENERATORS = load_models(device=DEVICE)
SCALE_FACTOR = 0.5
TARGET_DIRECTORY = "tmp"
# creating video results directory
create_directory(directory_path=TARGET_DIRECTORY)
def on_mode_dropdown_change(text):
return [
gr.Image(visible=text == MASK_GENERATION_MODE),
ImagePrompter(visible=text == BOX_PROMPT_MODE),
gr.Video(visible=text == VIDEO_SEGMENTATION_MODE),
ImagePrompter(visible=text == VIDEO_SEGMENTATION_MODE),
gr.Button(visible=text != VIDEO_SEGMENTATION_MODE),
gr.Button(visible=text == VIDEO_SEGMENTATION_MODE),
gr.Image(visible=text != VIDEO_SEGMENTATION_MODE),
gr.Video(visible=text == VIDEO_SEGMENTATION_MODE)
]
def on_video_input_change(video_input):
if not video_input:
return None
frames_generator = sv.get_video_frames_generator(video_input)
frame = next(frames_generator)
frame = sv.scale_image(frame, SCALE_FACTOR)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = Image.fromarray(frame)
return {'image': frame, 'points': []}
def process_image(
checkpoint_dropdown,
mode_dropdown,
image_input,
image_prompter_input
) -> Optional[Image.Image]:
if mode_dropdown == BOX_PROMPT_MODE:
image_input = image_prompter_input["image"]
prompt = image_prompter_input["points"]
if len(prompt) == 0:
return image_input
model = IMAGE_PREDICTORS[checkpoint_dropdown]
image = np.array(image_input.convert("RGB"))
box = np.array([[x1, y1, x2, y2] for x1, y1, _, x2, y2, _ in prompt])
model.set_image(image)
masks, _, _ = model.predict(box=box, multimask_output=False)
# dirty fix; remove this later
if len(masks.shape) == 4:
masks = np.squeeze(masks)
detections = sv.Detections(
xyxy=sv.mask_to_xyxy(masks=masks),
mask=masks.astype(bool)
)
return MASK_ANNOTATOR.annotate(image_input, detections)
if mode_dropdown == MASK_GENERATION_MODE:
model = MASK_GENERATORS[checkpoint_dropdown]
image = np.array(image_input.convert("RGB"))
result = model.generate(image)
detections = sv.Detections.from_sam(result)
return MASK_ANNOTATOR.annotate(image_input, detections)
def process_video(
checkpoint_dropdown,
mode_dropdown,
video_input,
video_prompter_input,
progress=gr.Progress(track_tqdm=True)
) -> str:
if mode_dropdown != VIDEO_SEGMENTATION_MODE:
return str(video_input)
name = generate_unique_name()
frame_directory_path = os.path.join(TARGET_DIRECTORY, name)
frames_sink = sv.ImageSink(
target_dir_path=frame_directory_path,
image_name_pattern="{:05d}.jpeg"
)
video_info = sv.VideoInfo.from_video_path(video_input)
frames_generator = sv.get_video_frames_generator(video_input)
with frames_sink:
for frame in tqdm(
frames_generator,
total=video_info.total_frames,
desc="splitting video into frames"
):
frame = sv.scale_image(frame, SCALE_FACTOR)
frames_sink.save_image(frame)
model = build_sam2_video_predictor(
"sam2_hiera_t.yaml",
"checkpoints/sam2_hiera_tiny.pt",
device=DEVICE
)
inference_state = model.init_state(
video_path=frame_directory_path,
offload_video_to_cpu=DEVICE == torch.device('cpu'),
offload_state_to_cpu=DEVICE == torch.device('cpu'),
)
prompt = video_prompter_input["points"]
points = np.array([[x1, y1] for x1, y1, _, _, _, _ in prompt])
labels = np.ones(len(points))
_, object_ids, mask_logits = model.add_new_points(
inference_state=inference_state,
frame_idx=0,
obj_id=1,
points=points,
labels=labels,
)
del inference_state
del model
video_path = os.path.join(TARGET_DIRECTORY, f"{name}.mp4")
return str(video_input)
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
checkpoint_dropdown_component = gr.Dropdown(
choices=CHECKPOINT_NAMES,
value=CHECKPOINT_NAMES[0],
label="Checkpoint", info="Select a SAM2 checkpoint to use.",
interactive=True
)
mode_dropdown_component = gr.Dropdown(
choices=MODE_NAMES,
value=MODE_NAMES[0],
label="Mode",
info="Select a mode to use. `box prompt` if you want to generate masks for "
"selected objects, `mask generation` if you want to generate masks "
"for the whole image, and `video segmentation` if you want to track "
"object on video.",
interactive=True
)
with gr.Row():
with gr.Column():
image_input_component = gr.Image(
type='pil', label='Upload image', visible=False)
image_prompter_input_component = ImagePrompter(
type='pil', label='Prompt image')
video_input_component = gr.Video(
label='Step 1: Upload video', visible=False)
video_prompter_input_component = ImagePrompter(
type='pil', label='Step 2: Prompt frame', visible=False)
submit_image_button_component = gr.Button(
value='Submit', variant='primary')
submit_video_button_component = gr.Button(
value='Submit', variant='primary', visible=False)
with gr.Column():
image_output_component = gr.Image(type='pil', label='Image output')
video_output_component = gr.Video(
label='Step 2: Video output', visible=False)
with gr.Row():
gr.Examples(
fn=process_image,
examples=EXAMPLES,
inputs=[
checkpoint_dropdown_component,
mode_dropdown_component,
image_input_component,
image_prompter_input_component,
],
outputs=[image_output_component],
run_on_click=True
)
mode_dropdown_component.change(
on_mode_dropdown_change,
inputs=[mode_dropdown_component],
outputs=[
image_input_component,
image_prompter_input_component,
video_input_component,
video_prompter_input_component,
submit_image_button_component,
submit_video_button_component,
image_output_component,
video_output_component
]
)
video_input_component.change(
fn=on_video_input_change,
inputs=[video_input_component],
outputs=[video_prompter_input_component]
)
submit_image_button_component.click(
fn=process_image,
inputs=[
checkpoint_dropdown_component,
mode_dropdown_component,
image_input_component,
image_prompter_input_component,
],
outputs=[image_output_component]
)
submit_video_button_component.click(
fn=process_video,
inputs=[
checkpoint_dropdown_component,
mode_dropdown_component,
video_input_component,
video_prompter_input_component,
],
outputs=[video_output_component]
)
demo.launch(debug=False, show_error=True, max_threads=1)
|