File size: 4,540 Bytes
d660b02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
from abc import ABC, abstractmethod
from typing import Generic, TypeVar, cast

from llm_engineering.application.networks import EmbeddingModelSingleton
from llm_engineering.domain.chunks import ArticleChunk, Chunk, PostChunk, RepositoryChunk
from llm_engineering.domain.embedded_chunks import (
    EmbeddedArticleChunk,
    EmbeddedChunk,
    EmbeddedPostChunk,
    EmbeddedRepositoryChunk,
)
from llm_engineering.domain.queries import EmbeddedQuery, Query

ChunkT = TypeVar("ChunkT", bound=Chunk)
EmbeddedChunkT = TypeVar("EmbeddedChunkT", bound=EmbeddedChunk)

embedding_model = EmbeddingModelSingleton()


class EmbeddingDataHandler(ABC, Generic[ChunkT, EmbeddedChunkT]):
    """

    Abstract class for all embedding data handlers.

    All data transformations logic for the embedding step is done here

    """

    def embed(self, data_model: ChunkT) -> EmbeddedChunkT:
        return self.embed_batch([data_model])[0]

    def embed_batch(self, data_model: list[ChunkT]) -> list[EmbeddedChunkT]:
        embedding_model_input = [data_model.content for data_model in data_model]
        embeddings = embedding_model(embedding_model_input, to_list=True)

        embedded_chunk = [
            self.map_model(data_model, cast(list[float], embedding))
            for data_model, embedding in zip(data_model, embeddings, strict=False)
        ]

        return embedded_chunk

    @abstractmethod
    def map_model(self, data_model: ChunkT, embedding: list[float]) -> EmbeddedChunkT:
        pass


class QueryEmbeddingHandler(EmbeddingDataHandler):
    def map_model(self, data_model: Query, embedding: list[float]) -> EmbeddedQuery:
        return EmbeddedQuery(
            id=data_model.id,
            author_id=data_model.author_id,
            author_full_name=data_model.author_full_name,
            content=data_model.content,
            embedding=embedding,
            metadata={
                "embedding_model_id": embedding_model.model_id,
                "embedding_size": embedding_model.embedding_size,
                "max_input_length": embedding_model.max_input_length,
            },
        )


class PostEmbeddingHandler(EmbeddingDataHandler):
    def map_model(self, data_model: PostChunk, embedding: list[float]) -> EmbeddedPostChunk:
        return EmbeddedPostChunk(
            id=data_model.id,
            content=data_model.content,
            embedding=embedding,
            platform=data_model.platform,
            document_id=data_model.document_id,
            author_id=data_model.author_id,
            author_full_name=data_model.author_full_name,
            metadata={
                "embedding_model_id": embedding_model.model_id,
                "embedding_size": embedding_model.embedding_size,
                "max_input_length": embedding_model.max_input_length,
            },
        )


class ArticleEmbeddingHandler(EmbeddingDataHandler):
    def map_model(self, data_model: ArticleChunk, embedding: list[float]) -> EmbeddedArticleChunk:
        return EmbeddedArticleChunk(
            id=data_model.id,
            content=data_model.content,
            embedding=embedding,
            platform=data_model.platform,
            link=data_model.link,
            document_id=data_model.document_id,
            author_id=data_model.author_id,
            author_full_name=data_model.author_full_name,
            metadata={
                "embedding_model_id": embedding_model.model_id,
                "embedding_size": embedding_model.embedding_size,
                "max_input_length": embedding_model.max_input_length,
            },
        )


class RepositoryEmbeddingHandler(EmbeddingDataHandler):
    def map_model(self, data_model: RepositoryChunk, embedding: list[float]) -> EmbeddedRepositoryChunk:
        return EmbeddedRepositoryChunk(
            id=data_model.id,
            content=data_model.content,
            embedding=embedding,
            platform=data_model.platform,
            name=data_model.name,
            link=data_model.link,
            document_id=data_model.document_id,
            author_id=data_model.author_id,
            author_full_name=data_model.author_full_name,
            metadata={
                "embedding_model_id": embedding_model.model_id,
                "embedding_size": embedding_model.embedding_size,
                "max_input_length": embedding_model.max_input_length,
            },
        )