File size: 8,916 Bytes
d660b02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import concurrent.futures
import gc
import json
import os

from datasets import Dataset, load_dataset
from huggingface_hub import HfApi
from huggingface_hub.utils import RepositoryNotFoundError
from openai import OpenAI
from tqdm.auto import tqdm
from vllm import LLM, SamplingParams

OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
DATASET_HUGGINGFACE_WORKSPACE = os.environ["DATASET_HUGGINGFACE_WORKSPACE"]
MODEL_HUGGINGFACE_WORKSPACE = os.environ["MODEL_HUGGINGFACE_WORKSPACE"]
IS_DUMMY = os.environ.get("IS_DUMMY", False)

print("====== EVAL PARAMETERS ======")  # noqa
print(f"{DATASET_HUGGINGFACE_WORKSPACE=}")  # noqa
print(f"{MODEL_HUGGINGFACE_WORKSPACE=}")  # noqa
print(f"{IS_DUMMY=}")  # noqa
print("=============================")  # noqa


def generate_answers(model_id: str, dataset_name: str):
    def format(sample):
        return "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{}\n\n### Response:\n".format(
            sample["instruction"]
        )

    dataset = load_dataset(dataset_name, split="test")
    if IS_DUMMY:
        dataset = dataset.select(range(10))
    print(f"Dataset size: {len(dataset)}")  # noqa
    dataset = dataset.map(lambda sample: {"prompt": format(sample)})

    print(f"Generating answers for {model_id}")  # noqa
    llm = LLM(model=model_id, max_model_len=2048)
    sampling_params = SamplingParams(temperature=0.8, top_p=0.95, min_p=0.05, max_tokens=2048)
    outputs = llm.generate(dataset["prompt"], sampling_params)

    answers = [output.outputs[0].text for output in outputs]
    dataset = dataset.add_column("answers", answers)

    print(f"Uploading results for {model_id}")  # noqa
    dataset.push_to_hub(f"{DATASET_HUGGINGFACE_WORKSPACE}/{model_id.split('/')[-1]}-results")
    gc.collect()

    return dataset


def evaluate_answer(instruction: str, answer: str, client: OpenAI) -> dict:
    prompt = f"""You are an expert judge. Please evaluate the quality of a given answer to an instruction based on two criteria:

1. Accuracy: How factually correct is the information presented in the answer? You are a technical expert in this topic.

2. Style: Is the tone and writing style appropriate for a blog post or social media content? It should use simple but technical words and avoid formal or academic language.



Accuracy scale:

1 (Poor): Contains factual errors or misleading information

2 (Good): Mostly accurate with minor errors or omissions

3 (Excellent): Highly accurate and comprehensive



Style scale:

1 (Poor): Too formal, uses some overly complex words

2 (Good): Good balance of technical content and accessibility, but still uses formal words and expressions

3 (Excellent): Perfectly accessible language for blog/social media, uses simple but precise technical terms when necessary



Example of bad style: The Llama2 7B model constitutes a noteworthy progression in the field of artificial intelligence, serving as the successor to its predecessor, the original Llama architecture.

Example of excellent style: Llama2 7B outperforms the original Llama model across multiple benchmarks.



Instruction: {instruction}



Answer: {answer}



Provide your evaluation in JSON format with the following structure:

{{

    "accuracy": {{

        "analysis": "...",

        "score": 0

    }},

    "style": {{

        "analysis": "...",

        "score": 0

    }}

}}

"""

    completion = client.chat.completions.create(
        model="gpt-4o-mini",
        messages=[
            {
                "role": "system",
                "content": "You are a helpful assistant who evaluates answers based on accuracy and style. Provide your response in JSON format with a short analysis and score for each criterion.",
            },
            {"role": "user", "content": prompt},
        ],
        response_format={"type": "json_object"},
        max_tokens=1000,
        temperature=0.9,
    )

    # Parse the structured output
    return json.loads(completion.choices[0].message.content)


def evaluate_batch(batch, start_index):
    client = OpenAI(api_key=OPENAI_API_KEY)
    return [(i, evaluate_answer(instr, ans, client)) for i, (instr, ans) in enumerate(batch, start=start_index)]


def evaluate_answers(model_id: str, num_threads: int = 10, batch_size: int = 5) -> Dataset:
    # Load the dataset
    dataset = load_dataset(f"{DATASET_HUGGINGFACE_WORKSPACE}/{model_id.split('/')[-1]}-results", split="all")

    # Create batches of instruction-answer pairs with their original indices
    batches = [
        (i, list(zip(dataset["instruction"][i : i + batch_size], dataset["answers"][i : i + batch_size], strict=False)))
        for i in range(0, len(dataset), batch_size)
    ]

    evaluations = [None] * len(dataset)

    with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
        futures = [executor.submit(evaluate_batch, batch, start_index) for start_index, batch in batches]

        for future in tqdm(concurrent.futures.as_completed(futures), total=len(futures)):
            for index, evaluation in future.result():
                evaluations[index] = evaluation

    # Replace the 'evaluation' column if it exists, otherwise add it
    if "evaluation" in dataset.column_names:
        dataset = dataset.remove_columns(["evaluation"])
    dataset = dataset.add_column("evaluation", evaluations)

    # Post-process evaluations
    accuracy_scores = []
    style_scores = []

    for evaluation in dataset["evaluation"]:
        try:
            eval_dict = json.loads(evaluation) if isinstance(evaluation, str) else evaluation
            accuracy_score = eval_dict["accuracy"]["score"]
            style_score = eval_dict["style"]["score"]

            accuracy_scores.append(accuracy_score)
            style_scores.append(style_score)

        except (json.JSONDecodeError, KeyError, TypeError):
            # If there's an error, append None to maintain alignment
            accuracy_scores.append(None)
            style_scores.append(None)

    # Add new columns to the dataset
    if "accuracy" in dataset.column_names:
        dataset = dataset.remove_columns(["accuracy"])
    dataset = dataset.add_column("accuracy", accuracy_scores)
    if "style" in dataset.column_names:
        dataset = dataset.remove_columns(["style"])
    dataset = dataset.add_column("style", style_scores)

    dataset.push_to_hub(f"{DATASET_HUGGINGFACE_WORKSPACE}/{model_id.split('/')[-1]}-results")

    return dataset


def check_if_huggingface_model_exists(model_id: str, default_value: str) -> str:
    api = HfApi()

    try:
        api.model_info(model_id)
        print(f"Found model on HF: '{model_id}'.")  # noqa
    except RepositoryNotFoundError:
        print(f"Model '{model_id}' does not exist.")  # noqa
        model_id = default_value
        print(f"Defaulting to '{model_id}'")  # noqa
        print("Train your own model to avoid this behavior.")  # noqa

    return model_id


def check_if_huggingface_dataset_exists(dataset_id: str, default_value: str) -> str:
    api = HfApi()

    try:
        api.dataset_info(dataset_id)
        print(f"Found dataset on HF: '{dataset_id}'.")  # noqa
    except RepositoryNotFoundError:
        print(f"Dataset '{dataset_id}' does not exist.")  # noqa
        dataset_id = default_value
        print(f"Defaulting to '{dataset_id}'")  # noqa
        print("Use a valid dataset or create your own to avoid this behavior.")  # noqa

    return dataset_id


model_ids = [
    check_if_huggingface_model_exists(
        f"{MODEL_HUGGINGFACE_WORKSPACE}/TwinLlama-3.1-8B", default_value="mlabonne/TwinLlama-3.1-8B"
    ),
    check_if_huggingface_model_exists(
        f"{MODEL_HUGGINGFACE_WORKSPACE}/TwinLlama-3.1-8B-DPO", default_value="mlabonne/TwinLlama-3.1-8B-DPO"
    ),
    "meta-llama/Meta-Llama-3.1-8B-Instruct",
]

if __name__ == "__main__":
    # Run generation
    for model_id in model_ids:
        dataset_name = check_if_huggingface_dataset_exists(
            f"{DATASET_HUGGINGFACE_WORKSPACE}/llmtwin", default_value="mlabonne/llmtwin"
        )
        generate_answers(model_id, dataset_name=dataset_name)

    # Run evaluation
    for model_id in model_ids:
        evaluate_answers(model_id)

    # Analyze results
    for model_id in model_ids:
        dataset = load_dataset(f"{DATASET_HUGGINGFACE_WORKSPACE}/{model_id.split('/')[-1]}-results", split="all")

        score = sum(dataset["accuracy"]) / len(dataset["accuracy"])
        print(f"{model_id.split('/')[-1]} - Accuracy: {score:.2f}")  # noqa

        score = sum(dataset["style"]) / len(dataset["style"])
        print(f"{model_id.split('/')[-1]} - Style: {score:.2f}")  # noqa