File size: 5,552 Bytes
d660b02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import json
from typing import Any, Dict, Optional

from loguru import logger
from threading import Lock

try:
    import boto3
except ModuleNotFoundError:
    logger.warning("Couldn't load AWS or SageMaker imports. Run 'poetry install --with aws' to support AWS.")

from langchain_ollama import ChatOllama

from llm_engineering.domain.inference import Inference
from llm_engineering.settings import settings
from langchain.schema import AIMessage, HumanMessage, SystemMessage



class LLMInferenceSagemakerEndpoint(Inference):
    """

    Class for performing inference using a SageMaker endpoint for LLM schemas.

    """

    def __init__(

        self,

        endpoint_name: str,

        default_payload: Optional[Dict[str, Any]] = None,

        inference_component_name: Optional[str] = None,

    ) -> None:
        super().__init__()

        self.client = boto3.client(
            "sagemaker-runtime",
            region_name=settings.AWS_REGION,
            aws_access_key_id=settings.AWS_ACCESS_KEY,
            aws_secret_access_key=settings.AWS_SECRET_KEY,
        )
        self.endpoint_name = endpoint_name
        self.payload = default_payload if default_payload else self._default_payload()
        self.inference_component_name = inference_component_name

    def _default_payload(self) -> Dict[str, Any]:
        """

        Generates the default payload for the inference request.



        Returns:

            dict: The default payload.

        """

        return {
            "inputs": "How is the weather?",
            "parameters": {
                "max_new_tokens": settings.MAX_NEW_TOKENS_INFERENCE,
                "top_p": settings.TOP_P_INFERENCE,
                "temperature": settings.TEMPERATURE_INFERENCE,
                "return_full_text": False,
            },
        }

    def set_payload(self, inputs: str, parameters: Optional[Dict[str, Any]] = None) -> None:
        """

        Sets the payload for the inference request.



        Args:

            inputs (str): The input text for the inference.

            parameters (dict, optional): Additional parameters for the inference. Defaults to None.

        """
        print("FYOU !")
        self.payload["inputs"] = inputs
        if parameters:
            self.payload["parameters"].update(parameters)
        print("FYOU")

    def inference(self) -> Dict[str, Any]:
        """

        Performs the inference request using the SageMaker endpoint.



        Returns:

            dict: The response from the inference request.

        Raises:

            Exception: If an error occurs during the inference request.

        """

        try:
            logger.info("Inference request sent.")

            invoke_args = {
                "EndpointName": self.endpoint_name,
                "ContentType": "application/json",
                "Body": json.dumps(self.payload),
            }
            if self.inference_component_name not in ["None", None]:
                invoke_args["InferenceComponentName"] = self.inference_component_name
            response = self.client.invoke_endpoint(**invoke_args)
            response_body = response["Body"].read().decode("utf8")

            return json.loads(response_body)

        except Exception:
            logger.exception("SageMaker inference failed.")

            raise


class LLMInferenceOLLAMA(Inference):
    """

    Class for performing inference using a SageMaker endpoint for LLM schemas.

    Implements Singleton design pattern.

    """
    _instance = None
    _lock = Lock()  # For thread safety

    def __new__(cls, model_name: str):
        # Ensure thread-safe singleton instance creation
        if not cls._instance:
            with cls._lock:
                if not cls._instance:
                    print("Creating new instance")
                    cls._instance = super().__new__(cls)
        else:
            print("Using existing instance")
        return cls._instance

    def __init__(self, model_name: str) -> None:
        # Only initialize once
        if not hasattr(self, "_initialized"):
            super().__init__()
            self.payload = []
            self.llm = ChatOllama(
                model=model_name,
                temperature=0.7,
            )
            self._initialized = True  # Flag to prevent reinitialization


    def set_payload(self, query: str, context: str | None, parameters: Optional[Dict[str, Any]] = None) -> None:
        """

        Sets the payload for the inference request.



        Args:

            inputs (str): The input text for the inference.

            parameters (dict, optional): Additional parameters for the inference. Defaults to None.

        """
        self.payload = [
            SystemMessage(content='You are a helpful Assistant that answers questions of the user accurately given its knowledge and the provided context that was found in the external database'),
            SystemMessage(content=context),
            query,
        ]
        return
        

    def inference(self) -> Dict[str, Any]:
        """

        Performs the inference request using the SageMaker endpoint.



        Returns:

            dict: The response from the inference request.

        Raises:

            Exception: If an error occurs during the inference request.

        """
        print(self.payload)
        return self.llm.invoke(self.payload)