File size: 4,174 Bytes
d660b02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from loguru import logger
from pydantic_settings import BaseSettings, SettingsConfigDict



class Settings(BaseSettings):
    model_config = SettingsConfigDict(env_file=".env", env_file_encoding="utf-8")

    # --- Required settings even when working locally. ---

    # OpenAI API
    OPENAI_MODEL_ID: str = "gpt-4o-mini"
    OPENAI_API_KEY: str | None = None

    LLAMA_MODEL_ID: str = "llama3.1"

    # Huggingface API
    HUGGINGFACE_ACCESS_TOKEN: str | None = None

    # Comet ML (during training)
    COMET_API_KEY: str | None = None
    COMET_PROJECT: str = "cs370"

    # --- Required settings when deploying the code. ---
    # --- Otherwise, default values values work fine. ---

    # MongoDB database
    DATABASE_HOST: str = "mongodb://llm_engineering:llm_engineering@llm_engineering_mongo:27017"
    DATABASE_NAME: str = "cs370"

    # Qdrant vector database
    USE_QDRANT_CLOUD: bool = False
    QDRANT_DATABASE_HOST: str = "llm_engineering_qdrant"
    QDRANT_DATABASE_PORT: int = 6333
    QDRANT_CLOUD_URL: str = "str"
    QDRANT_APIKEY: str | None = None

    # AWS Authentication
    AWS_REGION: str = "eu-central-1"
    AWS_ACCESS_KEY: str | None = None
    AWS_SECRET_KEY: str | None = None
    AWS_ARN_ROLE: str | None = None

    # --- Optional settings used to tweak the code. ---

    # AWS SageMaker
    HF_MODEL_ID: str = "mlabonne/TwinLlama-3.1-8B-DPO"
    GPU_INSTANCE_TYPE: str = "ml.g5.2xlarge"
    SM_NUM_GPUS: int = 1
    MAX_INPUT_LENGTH: int = 2048
    MAX_TOTAL_TOKENS: int = 4096
    MAX_BATCH_TOTAL_TOKENS: int = 4096
    COPIES: int = 1  # Number of replicas
    GPUS: int = 1  # Number of GPUs
    CPUS: int = 2  # Number of CPU cores

    SAGEMAKER_ENDPOINT_CONFIG_INFERENCE: str = "twin"
    SAGEMAKER_ENDPOINT_INFERENCE: str = "twin"
    TEMPERATURE_INFERENCE: float = 0.01
    TOP_P_INFERENCE: float = 0.9
    MAX_NEW_TOKENS_INFERENCE: int = 150

    # RAG
    TEXT_EMBEDDING_MODEL_ID: str = "sentence-transformers/all-MiniLM-L6-v2"
    RERANKING_CROSS_ENCODER_MODEL_ID: str = "cross-encoder/ms-marco-MiniLM-L-4-v2"
    RAG_MODEL_DEVICE: str = "cpu"

    # LinkedIn Credentials
    LINKEDIN_USERNAME: str | None = None
    LINKEDIN_PASSWORD: str | None = None

    @property
    def OPENAI_MAX_TOKEN_WINDOW(self) -> int:
        official_max_token_window = {
            "gpt-3.5-turbo": 16385,
            "gpt-4-turbo": 128000,
            "gpt-4o": 128000,
            "gpt-4o-mini": 128000,
        }.get(self.OPENAI_MODEL_ID, 128000)

        max_token_window = int(official_max_token_window * 0.90)

        return max_token_window

    @classmethod
    def load_settings(cls) -> "Settings":
        """

        Tries to load the settings from the ZenML secret store. If the secret does not exist, it initializes the settings from the .env file and default values.



        Returns:

            Settings: The initialized settings object.

        """

        try:
            logger.info("Loading settings from the ZenML secret store.")
            settings = Settings()
            #settings_secrets = Client().get_secret("settings")
            #settings = Settings(**settings_secrets.secret_values)
        except (RuntimeError, KeyError):
            logger.warning(
                "Failed to load settings from the ZenML secret store. Defaulting to loading the settings from the '.env' file."
            )
            settings = Settings()

        return settings

    def export(self) -> None:
        """

        Exports the settings to the ZenML secret store.

        """
        pass

        #env_vars = settings.model_dump()
        #for key, value in env_vars.items():
        #    env_vars[key] = str(value)
#
        #client = Client()
#
        #try:
        #    client.create_secret(name="settings", values=env_vars)
        #except EntityExistsError:
        #    logger.warning(
        #        "Secret 'scope' already exists. Delete it manually by running 'zenml secret delete settings', before trying to recreate it."
        #    )


settings = Settings.load_settings()