File size: 726 Bytes
d660b02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from clearml import PipelineDecorator

from steps import training as training_steps


@PipelineDecorator.pipeline(name="TODO", project="CS370")
def training(

    finetuning_type: str = "sft",

    num_train_epochs: int = 3,

    per_device_train_batch_size: int = 2,

    learning_rate: float = 3e-4,

    dataset_huggingface_workspace: str = "mlabonne",

    is_dummy: bool = False,

) -> None:
    training_steps.train(
        finetuning_type=finetuning_type,
        num_train_epochs=num_train_epochs,
        per_device_train_batch_size=per_device_train_batch_size,
        learning_rate=learning_rate,
        dataset_huggingface_workspace=dataset_huggingface_workspace,
        is_dummy=is_dummy,
    )