File size: 732 Bytes
d660b02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from clearml import PipelineDecorator

from llm_engineering.model.finetuning.sagemaker import run_finetuning_on_sagemaker


@PipelineDecorator.component(name="train")

def train(

    finetuning_type: str,

    num_train_epochs: int,

    per_device_train_batch_size: int,

    learning_rate: float,

    dataset_huggingface_workspace: str = "mlabonne",

    is_dummy: bool = False,

) -> None:
    run_finetuning_on_sagemaker(
        finetuning_type=finetuning_type,
        num_train_epochs=num_train_epochs,
        per_device_train_batch_size=per_device_train_batch_size,
        learning_rate=learning_rate,
        dataset_huggingface_workspace=dataset_huggingface_workspace,
        is_dummy=is_dummy,
    )