Spaces:
Build error
Build error
from sklearn.model_selection import train_test_split | |
from llm_engineering.application.preprocessing.operations.chunking import chunk_document | |
from llm_engineering.domain.cleaned_documents import CleanedDocument | |
from llm_engineering.domain.dataset import ( | |
InstructDataset, | |
InstructDatasetSample, | |
InstructTrainTestSplit, | |
PreferenceDataset, | |
PreferenceDatasetSample, | |
PreferenceTrainTestSplit, | |
) | |
from llm_engineering.domain.types import DataCategory | |
def create_instruct_train_test_split( | |
data: dict[DataCategory, InstructDataset], test_size=0.2, random_state=42 | |
) -> InstructTrainTestSplit: | |
train_data = {} | |
test_data = {} | |
for category, dataset in data.items(): | |
samples = dataset.samples | |
samples_dicts = [sample.model_dump() for sample in samples] | |
if len(samples_dicts) > 0: | |
train_samples_dicts, test_samples_dicts = train_test_split( | |
samples_dicts, test_size=test_size, random_state=random_state | |
) | |
train_samples = [InstructDatasetSample(**sample_dict) for sample_dict in train_samples_dicts] | |
test_samples = [InstructDatasetSample(**sample_dict) for sample_dict in test_samples_dicts] | |
else: | |
train_samples = [] | |
test_samples = [] | |
train_dataset = InstructDataset(category=category, samples=train_samples) | |
test_dataset = InstructDataset(category=category, samples=test_samples) | |
train_data[category] = train_dataset | |
test_data[category] = test_dataset | |
return InstructTrainTestSplit(train=train_data, test=test_data, test_split_size=test_size) | |
def create_preference_train_test_split( | |
data: dict[DataCategory, PreferenceDataset], test_size=0.2, random_state=42 | |
) -> PreferenceTrainTestSplit: | |
train_data = {} | |
test_data = {} | |
for category, dataset in data.items(): | |
samples = dataset.samples | |
samples_dicts = [sample.model_dump() for sample in samples] | |
if len(samples_dicts) > 0: | |
train_samples_dicts, test_samples_dicts = train_test_split( | |
samples_dicts, test_size=test_size, random_state=random_state | |
) | |
train_samples = [PreferenceDatasetSample(**sample_dict) for sample_dict in train_samples_dicts] | |
test_samples = [PreferenceDatasetSample(**sample_dict) for sample_dict in test_samples_dicts] | |
else: | |
train_samples = [] | |
test_samples = [] | |
train_dataset = PreferenceDataset(category=category, samples=train_samples) | |
test_dataset = PreferenceDataset(category=category, samples=test_samples) | |
train_data[category] = train_dataset | |
test_data[category] = test_dataset | |
return PreferenceTrainTestSplit(train=train_data, test=test_data, test_split_size=test_size) | |
def filter_short_answers( | |
data: dict[DataCategory, PreferenceDataset], min_length: int = 100 | |
) -> dict[DataCategory, PreferenceDataset]: | |
def is_long_enough(example: PreferenceDatasetSample) -> bool: | |
return len(example.chosen) >= min_length | |
filtered_data = {} | |
for category, dataset in data.items(): | |
filetered_dataset_samples = list(filter(is_long_enough, dataset.samples)) | |
filtered_dataset = PreferenceDataset(category=category, samples=filetered_dataset_samples) | |
filtered_data[category] = filtered_dataset | |
return filtered_data | |
def filter_answer_format(data: dict[DataCategory, PreferenceDataset]) -> dict[DataCategory, PreferenceDataset]: | |
def is_valid_format(example: PreferenceDatasetSample) -> bool: | |
chosen = example.chosen | |
return len(chosen) > 0 and chosen[0].isupper() and chosen[-1] in (".", "!", "?") | |
filtered_data = {} | |
for category, dataset in data.items(): | |
filetered_dataset_samples = list(filter(is_valid_format, dataset.samples)) | |
filtered_dataset = PreferenceDataset(category=category, samples=filetered_dataset_samples) | |
filtered_data[category] = filtered_dataset | |
return filtered_data | |
def extract_substrings( | |
documents: list[CleanedDocument], min_length: int = 1000, max_length: int = 2000 | |
) -> list[CleanedDocument]: | |
extracts = [] | |
for document in documents: | |
document_extracts = chunk_document(document.content, min_length, max_length) | |
for extract in document_extracts: | |
subdocument = document.model_copy() | |
subdocument.content = extract | |
extracts.append(subdocument) | |
return extracts | |