SkazuHD's picture
init space
d660b02
from functools import cached_property
from pathlib import Path
from typing import Optional
import numpy as np
from loguru import logger
from numpy.typing import NDArray
from sentence_transformers.SentenceTransformer import SentenceTransformer
from sentence_transformers.cross_encoder import CrossEncoder
from transformers import AutoTokenizer
from llm_engineering.settings import settings
from .base import SingletonMeta
class EmbeddingModelSingleton(metaclass=SingletonMeta):
"""
A singleton class that provides a pre-trained transformer model for generating embeddings of input text.
"""
def __init__(
self,
model_id: str = settings.TEXT_EMBEDDING_MODEL_ID,
device: str = settings.RAG_MODEL_DEVICE,
cache_dir: Optional[Path] = None,
) -> None:
self._model_id = model_id
self._device = device
self._model = SentenceTransformer(
self._model_id,
device=self._device,
cache_folder=str(cache_dir) if cache_dir else None,
)
self._model.eval()
@property
def model_id(self) -> str:
"""
Returns the identifier of the pre-trained transformer model to use.
Returns:
str: The identifier of the pre-trained transformer model to use.
"""
return self._model_id
@cached_property
def embedding_size(self) -> int:
"""
Returns the size of the embeddings generated by the pre-trained transformer model.
Returns:
int: The size of the embeddings generated by the pre-trained transformer model.
"""
dummy_embedding = self._model.encode("")
return dummy_embedding.shape[0]
@property
def max_input_length(self) -> int:
"""
Returns the maximum length of input text to tokenize.
Returns:
int: The maximum length of input text to tokenize.
"""
return self._model.max_seq_length
@property
def tokenizer(self) -> AutoTokenizer:
"""
Returns the tokenizer used to tokenize input text.
Returns:
AutoTokenizer: The tokenizer used to tokenize input text.
"""
return self._model.tokenizer
def __call__(
self, input_text: str | list[str], to_list: bool = True
) -> NDArray[np.float32] | list[float] | list[list[float]]:
"""
Generates embeddings for the input text using the pre-trained transformer model.
Args:
input_text (str): The input text to generate embeddings for.
to_list (bool): Whether to return the embeddings as a list or numpy array. Defaults to True.
Returns:
Union[np.ndarray, list]: The embeddings generated for the input text.
"""
try:
embeddings = self._model.encode(input_text)
except Exception:
logger.error(f"Error generating embeddings for {self._model_id=} and {input_text=}")
return [] if to_list else np.array([])
if to_list:
embeddings = embeddings.tolist()
return embeddings
class CrossEncoderModelSingleton(metaclass=SingletonMeta):
def __init__(
self,
model_id: str = settings.RERANKING_CROSS_ENCODER_MODEL_ID,
device: str = settings.RAG_MODEL_DEVICE,
) -> None:
"""
A singleton class that provides a pre-trained cross-encoder model for scoring pairs of input text.
"""
self._model_id = model_id
self._device = device
self._model = CrossEncoder(
model_name=self._model_id,
device=self._device,
)
self._model.model.eval()
def __call__(self, pairs: list[tuple[str, str]], to_list: bool = True) -> NDArray[np.float32] | list[float]:
scores = self._model.predict(pairs)
if to_list:
scores = scores.tolist()
return scores