SkazuHD's picture
init space
d660b02
import uuid
from abc import ABC
from typing import Any, Callable, Dict, Generic, Type, TypeVar
from uuid import UUID
import numpy as np
from loguru import logger
from pydantic import UUID4, BaseModel, Field
from qdrant_client.http import exceptions
from qdrant_client.http.models import Distance, VectorParams
from qdrant_client.models import CollectionInfo, PointStruct, Record
from llm_engineering.application.networks.embeddings import EmbeddingModelSingleton
from llm_engineering.domain.exceptions import ImproperlyConfigured
from llm_engineering.domain.types import DataCategory
from llm_engineering.infrastructure.db.qdrant import connection
T = TypeVar("T", bound="VectorBaseDocument")
class VectorBaseDocument(BaseModel, Generic[T], ABC):
id: UUID4 = Field(default_factory=uuid.uuid4)
def __eq__(self, value: object) -> bool:
if not isinstance(value, self.__class__):
return False
return self.id == value.id
def __hash__(self) -> int:
return hash(self.id)
@classmethod
def from_record(cls: Type[T], point: Record) -> T:
_id = UUID(point.id, version=4)
payload = point.payload or {}
attributes = {
"id": _id,
**payload,
}
if cls._has_class_attribute("embedding"):
attributes["embedding"] = point.vector or None
return cls(**attributes)
def to_point(self: T, **kwargs) -> PointStruct:
exclude_unset = kwargs.pop("exclude_unset", False)
by_alias = kwargs.pop("by_alias", True)
payload = self.model_dump(exclude_unset=exclude_unset, by_alias=by_alias, **kwargs)
_id = str(payload.pop("id"))
vector = payload.pop("embedding", {})
if vector and isinstance(vector, np.ndarray):
vector = vector.tolist()
return PointStruct(id=_id, vector=vector, payload=payload)
def model_dump(self: T, **kwargs) -> dict:
dict_ = super().model_dump(**kwargs)
dict_ = self._uuid_to_str(dict_)
return dict_
def _uuid_to_str(self, item: Any) -> Any:
if isinstance(item, dict):
for key, value in item.items():
if isinstance(value, UUID):
item[key] = str(value)
elif isinstance(value, list):
item[key] = [self._uuid_to_str(v) for v in value]
elif isinstance(value, dict):
item[key] = {k: self._uuid_to_str(v) for k, v in value.items()}
return item
@classmethod
def bulk_insert(cls: Type[T], documents: list["VectorBaseDocument"]) -> bool:
try:
cls._bulk_insert(documents)
except exceptions.UnexpectedResponse:
logger.info(
f"Collection '{cls.get_collection_name()}' does not exist. Trying to create the collection and reinsert the documents."
)
cls.create_collection()
try:
cls._bulk_insert(documents)
except exceptions.UnexpectedResponse:
logger.error(f"Failed to insert documents in '{cls.get_collection_name()}'.")
return False
return True
@classmethod
def _bulk_insert(cls: Type[T], documents: list["VectorBaseDocument"]) -> None:
points = [doc.to_point() for doc in documents]
connection.upsert(collection_name=cls.get_collection_name(), points=points)
@classmethod
def bulk_find(cls: Type[T], limit: int = 10, **kwargs) -> tuple[list[T], UUID | None]:
try:
documents, next_offset = cls._bulk_find(limit=limit, **kwargs)
except exceptions.UnexpectedResponse:
logger.error(f"Failed to search documents in '{cls.get_collection_name()}'.")
documents, next_offset = [], None
return documents, next_offset
@classmethod
def _bulk_find(cls: Type[T], limit: int = 10, **kwargs) -> tuple[list[T], UUID | None]:
collection_name = cls.get_collection_name()
offset = kwargs.pop("offset", None)
offset = str(offset) if offset else None
records, next_offset = connection.scroll(
collection_name=collection_name,
limit=limit,
with_payload=kwargs.pop("with_payload", True),
with_vectors=kwargs.pop("with_vectors", False),
offset=offset,
**kwargs,
)
documents = [cls.from_record(record) for record in records]
if next_offset is not None:
next_offset = UUID(next_offset, version=4)
return documents, next_offset
@classmethod
def search(cls: Type[T], query_vector: list, limit: int = 10, **kwargs) -> list[T]:
try:
documents = cls._search(query_vector=query_vector, limit=limit, **kwargs)
except exceptions.UnexpectedResponse:
logger.error(f"Failed to search documents in '{cls.get_collection_name()}'.")
documents = []
return documents
@classmethod
def _search(cls: Type[T], query_vector: list, limit: int = 10, **kwargs) -> list[T]:
collection_name = cls.get_collection_name()
records = connection.search(
collection_name=collection_name,
query_vector=query_vector,
limit=limit,
with_payload=kwargs.pop("with_payload", True),
with_vectors=kwargs.pop("with_vectors", False),
**kwargs,
)
documents = [cls.from_record(record) for record in records]
return documents
@classmethod
def get_or_create_collection(cls: Type[T]) -> CollectionInfo:
collection_name = cls.get_collection_name()
try:
return connection.get_collection(collection_name=collection_name)
except exceptions.UnexpectedResponse:
use_vector_index = cls.get_use_vector_index()
collection_created = cls._create_collection(
collection_name=collection_name, use_vector_index=use_vector_index
)
if collection_created is False:
raise RuntimeError(f"Couldn't create collection {collection_name}") from None
return connection.get_collection(collection_name=collection_name)
@classmethod
def create_collection(cls: Type[T]) -> bool:
collection_name = cls.get_collection_name()
use_vector_index = cls.get_use_vector_index()
return cls._create_collection(collection_name=collection_name, use_vector_index=use_vector_index)
@classmethod
def _create_collection(cls, collection_name: str, use_vector_index: bool = True) -> bool:
if use_vector_index is True:
vectors_config = VectorParams(size=EmbeddingModelSingleton().embedding_size, distance=Distance.COSINE)
else:
vectors_config = {}
return connection.create_collection(collection_name=collection_name, vectors_config=vectors_config)
@classmethod
def get_category(cls: Type[T]) -> DataCategory:
if not hasattr(cls, "Config") or not hasattr(cls.Config, "category"):
raise ImproperlyConfigured(
"The class should define a Config class with"
"the 'category' property that reflects the collection's data category."
)
return cls.Config.category
@classmethod
def get_collection_name(cls: Type[T]) -> str:
if not hasattr(cls, "Config") or not hasattr(cls.Config, "name"):
raise ImproperlyConfigured(
"The class should define a Config class with" "the 'name' property that reflects the collection's name."
)
return cls.Config.name
@classmethod
def get_use_vector_index(cls: Type[T]) -> bool:
if not hasattr(cls, "Config") or not hasattr(cls.Config, "use_vector_index"):
return True
return cls.Config.use_vector_index
@classmethod
def group_by_class(
cls: Type["VectorBaseDocument"], documents: list["VectorBaseDocument"]
) -> Dict["VectorBaseDocument", list["VectorBaseDocument"]]:
return cls._group_by(documents, selector=lambda doc: doc.__class__)
@classmethod
def group_by_category(cls: Type[T], documents: list[T]) -> Dict[DataCategory, list[T]]:
return cls._group_by(documents, selector=lambda doc: doc.get_category())
@classmethod
def _group_by(cls: Type[T], documents: list[T], selector: Callable[[T], Any]) -> Dict[Any, list[T]]:
grouped = {}
for doc in documents:
key = selector(doc)
if key not in grouped:
grouped[key] = []
grouped[key].append(doc)
return grouped
@classmethod
def collection_name_to_class(cls: Type["VectorBaseDocument"], collection_name: str) -> type["VectorBaseDocument"]:
for subclass in cls.__subclasses__():
try:
if subclass.get_collection_name() == collection_name:
return subclass
except ImproperlyConfigured:
pass
try:
return subclass.collection_name_to_class(collection_name)
except ValueError:
continue
raise ValueError(f"No subclass found for collection name: {collection_name}")
@classmethod
def _has_class_attribute(cls: Type[T], attribute_name: str) -> bool:
if attribute_name in cls.__annotations__:
return True
for base in cls.__bases__:
if hasattr(base, "_has_class_attribute") and base._has_class_attribute(attribute_name):
return True
return False