Spaces:
Build error
Build error
from enum import Enum | |
from loguru import logger | |
try: | |
from datasets import Dataset, DatasetDict, concatenate_datasets | |
except ImportError: | |
logger.warning("Huggingface datasets not installed. Install with `pip install datasets`") | |
from llm_engineering.domain.base import VectorBaseDocument | |
from llm_engineering.domain.types import DataCategory | |
class DatasetType(Enum): | |
INSTRUCTION = "instruction" | |
PREFERENCE = "preference" | |
class InstructDatasetSample(VectorBaseDocument): | |
instruction: str | |
answer: str | |
class Config: | |
category = DataCategory.INSTRUCT_DATASET_SAMPLES | |
class PreferenceDatasetSample(VectorBaseDocument): | |
instruction: str | |
rejected: str | |
chosen: str | |
class Config: | |
category = DataCategory.PREFERENCE_DATASET_SAMPLES | |
class InstructDataset(VectorBaseDocument): | |
category: DataCategory | |
samples: list[InstructDatasetSample] | |
class Config: | |
category = DataCategory.INSTRUCT_DATASET | |
def num_samples(self) -> int: | |
return len(self.samples) | |
def to_huggingface(self) -> "Dataset": | |
data = [sample.model_dump() for sample in self.samples] | |
return Dataset.from_dict( | |
{"instruction": [d["instruction"] for d in data], "output": [d["answer"] for d in data]} | |
) | |
class TrainTestSplit(VectorBaseDocument): | |
train: dict | |
test: dict | |
test_split_size: float | |
def to_huggingface(self, flatten: bool = False) -> "DatasetDict": | |
train_datasets = {category.value: dataset.to_huggingface() for category, dataset in self.train.items()} | |
test_datasets = {category.value: dataset.to_huggingface() for category, dataset in self.test.items()} | |
if flatten: | |
train_datasets = concatenate_datasets(list(train_datasets.values())) | |
test_datasets = concatenate_datasets(list(test_datasets.values())) | |
else: | |
train_datasets = Dataset.from_dict(train_datasets) | |
test_datasets = Dataset.from_dict(test_datasets) | |
return DatasetDict({"train": train_datasets, "test": test_datasets}) | |
class InstructTrainTestSplit(TrainTestSplit): | |
train: dict[DataCategory, InstructDataset] | |
test: dict[DataCategory, InstructDataset] | |
test_split_size: float | |
class Config: | |
category = DataCategory.INSTRUCT_DATASET | |
class PreferenceDataset(VectorBaseDocument): | |
category: DataCategory | |
samples: list[PreferenceDatasetSample] | |
class Config: | |
category = DataCategory.PREFERENCE_DATASET | |
def num_samples(self) -> int: | |
return len(self.samples) | |
def to_huggingface(self) -> "Dataset": | |
data = [sample.model_dump() for sample in self.samples] | |
return Dataset.from_dict( | |
{ | |
"prompt": [d["instruction"] for d in data], | |
"rejected": [d["rejected"] for d in data], | |
"chosen": [d["chosen"] for d in data], | |
} | |
) | |
class PreferenceTrainTestSplit(TrainTestSplit): | |
train: dict[DataCategory, PreferenceDataset] | |
test: dict[DataCategory, PreferenceDataset] | |
test_split_size: float | |
class Config: | |
category = DataCategory.PREFERENCE_DATASET | |
def build_dataset(dataset_type, *args, **kwargs) -> InstructDataset | PreferenceDataset: | |
if dataset_type == DatasetType.INSTRUCTION: | |
return InstructDataset(*args, **kwargs) | |
elif dataset_type == DatasetType.PREFERENCE: | |
return PreferenceDataset(*args, **kwargs) | |
else: | |
raise ValueError(f"Invalid dataset type: {dataset_type}") | |