docker-test / pipelines /end_to_end_data.py
SkazuHD's picture
init space
d660b02
from clearml import PipelineDecorator, Task
from .digital_data_etl import digital_data_etl
from .feature_engineering import feature_engineering
from .generate_datasets import generate_datasets
@PipelineDecorator.pipeline(name="end_to_end_data", project="CS370")
def end_to_end_data(
author_links: list[dict[str, str | list[str]]],
test_split_size: float = 0.1,
push_to_huggingface: bool = False,
dataset_id: str | None = None,
mock: bool = False,
) -> None:
task = Task.init(project_name='CS370', task_name='end_to_end_data')
wait_for_ids = []
for author_data in author_links:
last_step_invocation_id = digital_data_etl(
user_full_name=author_data["user_full_name"], links=author_data["links"]
)
wait_for_ids.append(last_step_invocation_id)
author_full_names = [author_data["user_full_name"] for author_data in author_links]
wait_for_ids = feature_engineering(author_full_names=author_full_names, wait_for=wait_for_ids)
generate_datasets(
test_split_size=test_split_size,
push_to_huggingface=push_to_huggingface,
dataset_id=dataset_id,
mock=mock,
wait_for=wait_for_ids,
)