from llm_engineering.infrastructure.inference_pipeline_api import rag import gradio as gr from langchain.schema import AIMessage, HumanMessage, SystemMessage def predict(message, history): history_langchain_format = [] for msg in history: if msg['role'] == "user": history_langchain_format.append(HumanMessage(content=msg['content'])) elif msg['role'] == "assistant": history_langchain_format.append(AIMessage(content=msg['content'])) query = HumanMessage(content=message) gpt_response = rag(query, history_langchain_format) history_langchain_format.append(query) return gpt_response.content predefined_questions = [ "Tell me how can I navigate to a specific pose - include replanning aspects in your answer.", "Can you provide me with code for this task?", ] demo = gr.ChatInterface( predict, type="messages", examples=[ "Tell me how can I navigate to a specific pose - include replanning aspects in your answer.", "Can you provide me with code for this task?"], description="Ask specific questions related to ROS2 navigation, motion planning, and simulation", stop_btn=True, head="RAG System for ROS2 Robotics", ) demo.launch(server_name="0.0.0.0", server_port=7860)