import concurrent.futures import opik from loguru import logger from qdrant_client.models import FieldCondition, Filter, MatchValue from llm_engineering.application import utils from llm_engineering.application.preprocessing.dispatchers import EmbeddingDispatcher from llm_engineering.domain.embedded_chunks import ( EmbeddedArticleChunk, EmbeddedChunk, EmbeddedPostChunk, EmbeddedRepositoryChunk, ) from llm_engineering.domain.queries import EmbeddedQuery, Query from .query_expanison import QueryExpansion from .reranking import Reranker from .self_query import SelfQuery class ContextRetriever: def __init__(self, mock: bool = False) -> None: self._query_expander = QueryExpansion(mock=mock) self._metadata_extractor = SelfQuery(mock=mock) self._reranker = Reranker(mock=mock) @opik.track(name="ContextRetriever.search") def search( self, query: str, k: int = 3, expand_to_n_queries: int = 3, ) -> list: query_model = Query.from_str(query) query_model = self._metadata_extractor.generate(query_model) logger.info( f"Successfully extracted the author_full_name = {query_model.author_full_name} from the query.", ) n_generated_queries = self._query_expander.generate(query_model, expand_to_n=expand_to_n_queries) logger.info( f"Successfully generated {len(n_generated_queries)} search queries.", ) logger.info(f"The generated queries are \n {n_generated_queries}") with concurrent.futures.ThreadPoolExecutor() as executor: search_tasks = [executor.submit(self._search, _query_model, k) for _query_model in n_generated_queries] n_k_documents = [task.result() for task in concurrent.futures.as_completed(search_tasks)] n_k_documents = utils.misc.flatten(n_k_documents) n_k_documents = list(set(n_k_documents)) logger.info(f"{len(n_k_documents)} documents retrieved successfully") if len(n_k_documents) > 0: k_documents = self.rerank(query, chunks=n_k_documents, keep_top_k=k) else: k_documents = [] return k_documents def _search(self, query: Query, k: int = 3) -> list[EmbeddedChunk]: assert k >= 3, "k should be >= 3" def _search_data_category( data_category_odm: type[EmbeddedChunk], embedded_query: EmbeddedQuery ) -> list[EmbeddedChunk]: #if embedded_query.author_id: # query_filter = Filter( # must=[ # FieldCondition( # key="author_id", # match=MatchValue( # value=str(embedded_query.author_id), # ), # ) # ] # ) #else: query_filter = None return data_category_odm.search( query_vector=embedded_query.embedding, limit=k // 3, query_filter=query_filter, ) embedded_query: EmbeddedQuery = EmbeddingDispatcher.dispatch(query) #post_chunks = _search_data_category(EmbeddedPostChunk, embedded_query) #articles_chunks = _search_data_category(EmbeddedArticleChunk, embedded_query) repositories_chunks = _search_data_category(EmbeddedRepositoryChunk, embedded_query) retrieved_chunks = repositories_chunks #post_chunks + articles_chunks + logger.info(f"Retrieved {len(retrieved_chunks)} chunks") return retrieved_chunks def rerank(self, query: str | Query, chunks: list[EmbeddedChunk], keep_top_k: int) -> list[EmbeddedChunk]: if isinstance(query, str): query = Query.from_str(query) reranked_documents = self._reranker.generate(query=query, chunks=chunks, keep_top_k=keep_top_k) logger.info(f"{len(reranked_documents)} documents reranked successfully.") return reranked_documents