from clearml import PipelineDecorator from steps import training as training_steps @PipelineDecorator.pipeline(name="TODO", project="CS370") def training( finetuning_type: str = "sft", num_train_epochs: int = 3, per_device_train_batch_size: int = 2, learning_rate: float = 3e-4, dataset_huggingface_workspace: str = "mlabonne", is_dummy: bool = False, ) -> None: training_steps.train( finetuning_type=finetuning_type, num_train_epochs=num_train_epochs, per_device_train_batch_size=per_device_train_batch_size, learning_rate=learning_rate, dataset_huggingface_workspace=dataset_huggingface_workspace, is_dummy=is_dummy, )