from InstructorEmbedding import INSTRUCTOR # Create virtual environment, install dependencies and run the code: # 1. Create: python3 -m venv instructor_venv # 2. Activate: source instructor_venv/bin/activate # 3. Install: pip install sentence-transformers==2.2.2 InstructorEmbedding==1.0.1 # 4. Run the code: python code_snippets/08_instructor_embeddings.py if __name__ == "__main__": model = INSTRUCTOR("hkunlp/instructor-base") sentence = "RAG Fundamentals First" instruction = "Represent the title of an article about AI:" embeddings = model.encode([[instruction, sentence]]) print(embeddings.shape) # noqa # Output: (1, 768)